
DAppendixThe
Mach
System

This chapter was first written in 1991 and has been updated over time but is
no longer modified.

In this appendix we examine the Mach operating system. Mach is designed
to incorporate the many recent innovations in operating-system research to
produce a fully functional, technically advanced system. Unlike UNIX, which
was developed without regard for multiprocessing, Mach incorporates mul-
tiprocessing support throughout. This support is exceedingly flexible, accom-
modating shared-memory systems as well as systems with no memory shared
between processors. Mach is designed to run on computer systems ranging
fromone processor to thousands of processors. In addition, it is easily ported to
many varied computer architectures. A key goal of Mach is to be a distributed
system capable of functioning on heterogeneous hardware.

Although many experimental operating systems are being designed, built,
and used, Mach satisfies the needs of most users better than the others because
it offers full compatibility with UNIX 4.3 BSD. This compatibility also gives
us a unique opportunity to compare two functionally similar, but internally
dissimilar, operating systems. Mach and UNIX differ in their emphases, so our
Mach discussion does not exactly parallel our UNIX discussion. In addition,
we do not include a section on the user interface, because that component is
similar to the user interface in 4.3 BSD.As youwill see,Mach provides the ability
to layer emulation of other operating systems as well; other operating systems
can even run concurrently with Mach.

D.1 History of the Mach System

Mach traces its ancestry to the Accent operating system developed at Carnegie
Mellon University (CMU). Although Accent pioneered a number of novel
operating-system concepts, its utility was limited by its inability to execute
UNIX applications and its strong ties to a single hardware architecture, which
made it difficult to port. Mach’s communication system and philosophy
are derived from Accent, but many other significant portions of the system
(for example, the virtual memory system and the management of tasks and
threads) were developed from scratch. An important goal of the Mach effort
was support for multiprocessors.

1

2 Appendix D The Mach System

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems.Mach codewas initially developed inside the 4.2BSD kernel, with BSD ker-
nel components replaced by Mach components as the Mach components were
completed. The BSD components were updated to 4.3 BSD when that became
available. By 1986, the virtual memory and communication subsystems were
running on the DEC VAX computer family, including multiprocessor versions
of the VAX. Versions for the IBM RT/PC and for Sun 3 workstations followed
shortly; 1987 saw the completion of the Encore Multimax and Sequent Balance
multiprocessor versions, including task and thread support, as well as the first
official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provided compatibility with the corresponding
BSD systems by including much of BSD’s code in the kernel. The new features
and capabilities of Mach made the kernels in these releases larger than the
corresponding BSD kernels. Mach 3 (Figure D.1) moved the BSD code outside
of the kernel, leaving a much smaller microkernel. This system implements
only basic Mach features in the kernel; all UNIX-specific code has been evicted
to run in user-mode servers. Excluding UNIX-specific code from the kernel
allows replacement of BSD with another operating system or the simultaneous
execution of multiple operating-system interfaces on top of the microkernel.
In addition to BSD, user-mode implementations have been developed for DOS,
the Macintosh operating system, and OSF/1. This approach has similarities to
the virtual machine concept, but the virtual machine is defined by software
(the Mach kernel interface), rather than by hardware. With Release 3.0, Mach
became available on awide variety of systems, including single-processor Sun,
Intel, IBM, and DEC machines and multiprocessor DEC, Sequent, and Encore
systems.

Mach was propelled to the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would useMach 2.5 as the
basis for its new operating system, OSF/1. The release of OSF/1 occurred a year
later, and it now competes with UNIX SystemV, Release 4, the operating system
of choice among UNIX International (UI) members. OSF members include key
technological companies such as IBM, DEC, and HP. Mach 2.5 is also the basis
for the operating system on the NeXT workstation, the brainchild of Steve Jobs,
of Apple Computer fame. OSF is evaluating Mach 3 as the basis for a future

Mach

tasks and
threads

IPC virtual
memory

scheduling

4.3 BSD

OSF/1

HPUX

OS/2

database
system

Figure D.1 Mach 3 structure.

D.2 Design Principles 3

operating-system release, and research on Mach continues at CMU, OSF, and
elsewhere.

D.2 Design Principles

The Mach operating system was designed to provide basic mechanisms that
most current operating systems lack. The goal is to design an operating system
that is BSD-compatible and, in addition, excels in the following areas:

• Support for diverse architectures, including multiprocessors with varying
degrees of shared memory access: uniform memory access (UMA), non-
uniform memory access (NUMA), and no remote memory access (NORMA)

• Ability to function with varying intercomputer network speeds, from
wide-area networks to high-speed local-area networks and tightly coupled
multiprocessors

• Simplified kernel structure, with a small number of abstractions (in turn,
these abstractions are sufficiently general to allow other operating systems
to be implemented on top of Mach.)

• Distributed operation, providing network transparency to clients and an
object-oriented organization both internally and externally

• Integrated memory management and interprocess communication, to
provide efficient communication of large numbers of data as well as
communication-based memory management

• Heterogeneous system support, to make Mach widely available and inter-
operable among computer systems from multiple vendors

The designers of Mach have been heavily influenced by BSD (and by UNIX
in general), whose benefits include

• A simple programmer interface, with a good set of primitives and a con-
sistent set of interfaces to system facilities

• Easy portability to a wide class of single processors

• An extensive library of utilities and applications

• The ability to combine utilities easily via pipes

Of course, the designers also wanted to redress what they saw as the
drawbacks of BSD:

• Akernel that has become the repository ofmany redundant features—and
that consequently is difficult to manage and modify

• Original design goals that made it difficult to provide support for
multiprocessors, distributed systems, and shared program libraries (for
instance, because the kernel was designed for single processors, it has no
provisions for locking code or data that other processors might be using.)

4 Appendix D The Mach System

• Too many fundamental abstractions, providing too many similar, compet-
ing means with which to accomplish the same tasks

The development ofMach continues to be a huge undertaking. The benefits
of such a system are equally large, however. The operating system runs on
many existing single-processor and multiprocessor architectures, and it can
be easily ported to future ones. It makes research easier, because computer
scientists can add features via user-level code, instead of having to write their
own tailor-made operating system. Areas of experimentation include operat-
ing systems, databases, reliable distributed systems,multiprocessor languages,
security, and distributed artificial intelligence. In its current version, the Mach
system is usually as efficient as other major versions of UNIX when performing
similar tasks.

D.3 System Components

To achieve the design goals of Mach, the developers reduced the operating-
system functionality to a small set of basic abstractions, out of which all other
functionality can be derived. TheMach approach is to place as little as possible
within the kernel but to make what is there powerful enough that all other
features can be implemented at the user level.

Mach’s design philosophy is to have a simple, extensible kernel, concen-
trating on communication facilities. For instance, all requests to the kernel, and
all data movement among processes, are handled through one communication
mechanism. Mach is therefore able to provide system-wide protection to its
users by protecting the communication mechanism. Optimizing this one com-
munication path can result in significant performance gains, and it is simpler
than trying to optimize several paths. Mach is extensible, because many tradi-
tionally kernel-based functions can be implemented as user-level servers. For
instance, all pagers (including the default pager) can be implemented exter-
nally and called by the kernel for the user.

Mach is an example of an object-oriented system where the data and the
operations that manipulate that data are encapsulated into an abstract object.
Only the operations of the object are able to act on the entities defined in it. The
details of how these operations are implemented are hidden, as are the internal
data structures. Thus, a programmer can use an object only by invoking its
defined, exported operations. A programmer can change the internal opera-
tions without changing the interface definition, so changes and optimizations
do not affect other aspects of system operation. The object-oriented approach
supported by Mach allows objects to reside anywhere in a network of Mach
systems, transparent to the user. The port mechanism, discussed later in this
section, makes all of this possible.

Mach’s primitive abstractions are the heart of the systemand are as follows:

• A task is an execution environment that provides the basic unit of resource
allocation. It consists of a virtual address space and protected access to
system resources via ports, and it may contain one or more threads.

• A thread is the basic unit of execution andmust run in the context of a task
(which provides the address space). All threads within a task share the

D.3 System Components 5

task’s resources (ports, memory, and so on). There is no notion of a process
inMach. Rather, a traditional process is implemented as a taskwith a single
thread of control.

• A port is the basic object-reference mechanism in Mach and is imple-
mented as a kernel-protected communication channel. Communication is
accomplished by sending messages to ports; messages are queued at the
destination port if no thread is immediately ready to receive them. Ports
are protected by kernel-managed capabilities, or port rights. A task must
have a port right to send a message to a port. The programmer invokes an
operation on an object by sending a message to a port associated with that
object. The object being represented by a port receives the messages.

• A port set is a group of ports sharing a common message queue. A thread
can receive messages for a port set and thus service multiple ports. Each
receivedmessage identifies the individual port (within the set) fromwhich
it was received. The receiver can use this to identify the object referred to
by the message.

• A message is the basic method of communication between threads in
Mach. It is a typed collection of data objects. For each object, it may contain
the actual data or a pointer to out-of-line data. Port rights are passed in
messages; this is the only way to move them among tasks. (Passing a port
right in shared memory does not work, because the Mach kernel will not
permit the new task to use a right obtained in this manner.)

• Amemory object is a source of memory. Tasks can access it by mapping
portions of an object (or the entire object) into their address spaces. The
object can be managed by a user-mode external memory manager. One
example is a file managed by a file server; however, a memory object can
be any object for which memory-mapped access makes sense. A mapped
buffer implementation of a UNIX pipe is another example.

Figure D.2 illustrates these abstractions, which we explain further in the
remainder of this chapter.

An unusual feature of Mach, and a key to the system’s efficiency, is the
blending of memory and interprocess-communication (IPC) features. Whereas
some other distributed systems (such as Solaris, with its NFS features) have
special-purpose extensions to the file system to extend it over a network, Mach
provides a general-purpose, extensible merger of memory andmessages at the
heart of its kernel. This feature not only allowsMach to be used for distributed
and parallel programming but also helps in the implementation of the kernel
itself.

Mach connects memory management and IPC by allowing each to be used
in the implementation of the other. Memory management is based on the use
of memory objects. A memory object is represented by a port (or ports), and
IPC messages are sent to this port to request operations (for example, pagein,
pageout) on the object. Because IPC is used, memory objects can reside on
remote systems and be accessed transparently. The kernel caches the contents
of memory objects in local memory. Conversely, memory-management tech-
niques are used in the implementation of message passing. Where possible,

6 Appendix D The Mach System

task

data region

text region

threads

program
counter

memory
object

message

port

port set

secondary storage

Figure D.2 Mach’s basic abstractions.

Mach passes messages by moving pointers to shared memory objects, rather
than by copying the objects themselves.

IPC tends to involve considerable system overhead. For intrasystem mes-
sages, it is generally less efficient than communication accomplished through
shared memory. Because Mach is a message-based kernel, message handling
must be carried out efficiently. Most of the inefficiency of message handling in
traditional operating systems is due to either the copying ofmessages from one
task to another (for intracomputer messages) or low network-transfer speed
(for intercomputer messages). To solve these problems, Mach uses virtual
memory remapping to transfer the contents of large messages. In other words,
the message transfer modifies the receiving task’s address space to include a
copy of the message contents. Virtual copy (or copy-on-write) techniques are
used to avoid or delay the actual copying of the data. This approach has several
advantages:

• Increased flexibility in memory management for user programs

• Greater generality, allowing the virtual copy approach to be used in tightly
and loosely coupled computers

• Improved performance over UNIX message passing

• Easier task migration (because ports are location independent, a task and
all its ports can be moved from one machine to another. All tasks that
previously communicated with the moved task can continue to do so
because they reference the task only by its ports and communicate via
messages to these ports.)

D.4 Process Management 7

In the sections that follow, we detail the operation of process management,
IPC, andmemorymanagement. Then, we discussMach’s chameleonlike ability
to support multiple operating-system interfaces.

D.4 Process Management

A task can be thought of as a traditional process that does not have an instruc-
tion pointer or a register set. A task contains a virtual address space, a set of
port rights, and accounting information. A task is a passive entity that does
nothing unless it has one or more threads executing in it.

D.4.1 Basic Structure

A task containing one thread is similar to a UNIX process. Just as a fork()
system call produces a new UNIX process, Mach creates a new task by using
fork(). The new task’s memory is a duplicate of the parent’s address space,
as dictated by the inheritance attributes of the parent’s memory. The new task
contains one thread, which is started at the same point as the creating fork()
call in the parent. Threads and tasks can also be suspended and resumed.

Threads are especially useful in server applications, which are common
in UNIX, since one task can have multiple threads to service multiple requests
to the task. Threads also allow efficient use of parallel computing resources.
Rather than having one process on each processor, with the corresponding per-
formance penalty and operating-system overhead, a task can have its threads
spread among parallel processors. Threads add efficiency to user-level pro-
grams as well. For instance, in UNIX, an entire process must wait when a
page fault occurs or when a system call is executed. In a task with multiple
threads, only the thread that causes the page fault or executes a system call
is delayed; all other threads continue executing. Because Mach has kernel-
supported threads (Chapter 4), the threads have some cost associated with
them. Theymust have supporting data structures in the kernel, andmore com-
plex kernel-scheduling algorithms must be provided. These algorithms and
thread states are discussed in Chapter 4.

At the user level, threads may be in one of two states:

• Running. The thread is either executing or waiting to be allocated a pro-
cessor. A thread is considered to be running even if it is blocked within the
kernel (waiting for a page fault to be satisfied, for instance).

• Suspended. The thread is neither executing on a processor nor waiting
to be allocated a processor. A thread can resume its execution only if it is
returned to the running state.

These two states are also associated with a task. An operation on a task
affects all threads in a task, so suspending a task involves suspending all the
threads in it. Task and thread suspensions are separate, independent mecha-
nisms, however, so resuming a thread in a suspended task does not resume
the task.

Mach provides primitives fromwhich thread-synchronization tools can be
built. This practice is consistent with Mach’s philosophy of providing mini-

8 Appendix D The Mach System

mum yet sufficient functionality in the kernel. The Mach IPC facility can be
used for synchronization, with processes exchanging messages at rendezvous
points. Thread-level synchronization is provided by calls to start and stop
threads at appropriate times. A suspend count is kept for each thread. This
count allows multiple suspend() calls to be executed on a thread, and only
when an equal number of resume() calls occur is the thread resumed. Unfor-
tunately, this feature has its own limitation. Because it is an error for a start()
call to be executed before a stop() call (the suspend count would become
negative), these routines cannot be used to synchronize shared data access.
However, wait() and signal() operations associated with semaphores, and
used for synchronization, can be implemented via the IPC calls. We discuss this
method in Section D.5.

D.4.2 The C Threads Package

Mach provides low-level but flexible routines instead of polished, large, and
more restrictive functions. Rather than making programmers work at this
low level, Mach provides many higher-level interfaces for programming in C
and other languages. For instance, the C threads package provides multiple
threads of control, shared variables, mutual exclusion for critical sections, and
condition variables for synchronization. In fact, C threads is one of the major
influences on the POSIX Pthreads standard, which many operating systems
support. As a result, there are strong similarities between the C threads and
Pthreads programming interfaces. The thread-control routines include calls to
perform these tasks:

• Create a new thread within a task, given a function to execute and param-
eters as input. The thread then executes concurrently with the creating
thread, which receives a thread identifier when the call returns.

• Destroy the calling thread, and return a value to the creating thread.

• Wait for a specific thread to terminate before allowing the calling thread
to continue. This call is a synchronization tool, much like the UNIX wait()
system calls.

• Yield use of a processor, signaling that the scheduler can run another
thread at this point. This call is also useful in the presence of a preemptive
scheduler, as it can be used to relinquish the CPU voluntarily before the
time quantum (or scheduling interval) expires if a thread has no use for
the CPU.

Mutual exclusion is achieved through the use of spinlocks, as discussed in
Chapter 6. The routines associated with mutual exclusion are these:

• The routine mutex alloc() dynamically creates a mutex variable.

• The routine mutex free() deallocates a dynamically created mutex vari-
able.

• The routine mutex lock() locks a mutex variable. The executing thread
loops in a spinlock until the lock is attained. A deadlock results if a thread
with a lock tries to lock the same mutex variable. Bounded waiting is

D.4 Process Management 9

not guaranteed by the C threads package. Rather, it is dependent on the
hardware instructions used to implement the mutex routines.

• The routine mutex unlock() unlocks a mutex variable, much like the
typical signal() operation of a semaphore.

General synchronization without busy waiting can be achieved through
the use of condition variables, which can be used to implement a monitor,
as described in Chapter 6. A condition variable is associated with a mutex
variable and reflects a Boolean state of that variable. The routines associated
with general synchronization are these:

• The routine condition alloc() dynamically allocates a condition vari-
able.

• The routine condition free() deletes a dynamically created condition
variable allocated as a result of condition alloc().

• The routine condition wait() unlocks the associated mutex variable
and blocks the thread until a condition signal() is executed on the
condition variable, indicating that the event being waited for may have
occurred. The mutex variable is then locked, and the thread continues.
A condition signal() does not guarantee that the condition still holds
when the unblocked thread finally returns from its condition wait()
call, so the awakened thread must loop, executing the condition wait()
routine until it is unblocked and the condition holds.

As an example of the C threads routines, consider the bounded-buffer
synchronization problem of Section 7.1.1. The producer and consumer are
represented as threads that access the common bounded-buffer pool. We use
a mutex variable to protect the buffer while it is being updated. Once we have
exclusive access to the buffer, we use condition variables to block the producer
thread if the buffer is full and to block the consumer thread if the buffer is
empty. As in Chapter 6, we assume that the buffer consists of n slots, each
capable of holding one item. The mutex semaphore provides mutual exclusion
for accesses to the buffer pool and is initialized to the value 1. The empty and
full semaphores count the number of empty and full buffers, respectively. The
semaphore empty is initialized to the value n; the semaphore full is initialized
to the value 0. The condition variable nonempty is true while the buffer has
items in it, and nonfull is true if the buffer has an empty slot. The first step
includes the allocation of the mutex and condition variables:

mutex alloc(mutex);
condition alloc(nonempty, nonfull);

The code for the producer thread is shown in Figure D.3, and the code for
the consumer thread is shown in Figure D.4. When the program terminates,
the mutex and condition variables need to be deallocated:

mutex free(mutex);
condition free(nonempty, nonfull);

10 Appendix D The Mach System

do {
. . .

// produce an item into nextp
. . .

mutex lock(mutex);
while(full)

condition wait(nonfull, mutex);
. . .

// add nextp to buffer
. . .

condition signal(nonempty);
mutex unlock(mutex);

} while(TRUE);

Figure D.3 The structure of the producer process.

D.4.3 The CPU Scheduler

The CPU scheduler for a thread-basedmultiprocessor operating system ismore
complex than its process-based relatives. There are generally more threads
in a multithreaded system than there are processes in a multitasking system.
Keeping track ofmultiple processors is also difficult and is a relatively new area
of research.Mach uses a simple policy to keep the scheduler manageable. Only
threads are scheduled, so no knowledge of tasks is needed in the scheduler. All
threads compete equally for resources, including time quanta.

Each thread has an associated priority number ranging from 0 through 127,
which is based on the exponential average of its usage of the CPU. That is, a
thread that recently used the CPU for a large amount of time has the lowest

do {
mutex lock(mutex);
while(empty)

condition wait(nonempty, mutex);
. . .

// remove an item from the buffe to nextc
. . .

condition signal(nonfull);
mutex unlock(mutex);

. . .
// consume the item in nextc

. . .
} until(FALSE);

Figure D.4 The structure of the consumer process.

D.4 Process Management 11

priority. Mach uses the priority to place the thread in one of 32 global run
queues. These queues are searched in priority order for waiting threads when
a processor becomes idle. Mach also keeps per-processor, or local, run queues.
A local run queue is used for threads that are bound to an individual processor.
For instance, a device driver for a device connected to an individual CPU must
run on only that CPU.

Instead of a central dispatcher that assigns threads to processors, each
processor consults the local and global run queues to select the appropriate
next thread to run. Threads in the local run queue have absolute priority over
those in the global queues, because it is assumed that they are performing some
chore for the kernel. The run queues—like most other objects in Mach—are
locked when they are modified to avoid simultaneous changes by multiple
processors. To speed dispatching of threads on the global run queue, Mach
maintains a list of idle processors.

Additional scheduling difficulties arise from the multiprocessor nature of
Mach. A fixed time quantum is not appropriate because, for instance, there
may be fewer runnable threads than there are available processors. It would
be wasteful to interrupt a thread with a context switch to the kernel when that
thread’s quantum runs out, only to have the thread be placed right back in
the running state. Thus, instead of using a fixed-length quantum, Mach varies
the size of the time quantum inversely with the total number of threads in the
system. It keeps the time quantum over the entire system constant, however.
For example, in a systemwith 10 processors, 11 threads, and a 100-millisecond
quantum, a context switch needs to occur on each processor only once per
second to maintain the desired quantum.

Of course, complications still exist. Even relinquishing the CPU while wait-
ing for a resource is more difficult than it is on traditional operating systems.
First, a thread must issue a call to alert the scheduler that the thread is about
to block. This alert avoids race conditions and deadlocks, which could occur
when the execution takes place in amultiprocessor environment. A second call
actually causes the thread to be moved off the run queue until the appropriate
event occurs. The scheduler uses many other internal thread states to control
thread execution.

D.4.4 Exception Handling

Mach was designed to provide a single, simple, consistent exception-handling
system, with support for standard as well as user-defined exceptions. To avoid
redundancy in the kernel, Mach uses kernel primitives whenever possible. For
instance, an exception handler is just another thread in the task in which the
exception occurs. Remote procedure call (RPC) messages are used to synchro-
nize the execution of the thread causing the exception (the victim) and that of
the handler and to communicate information about the exception between the
victim and handler. Mach exceptions are also used to emulate the BSD signal
package.

Disruptions to normal program execution come in two varieties: internally
generated exceptions and external interrupts. Interrupts are asynchronously
generated disruptions of a thread or task, whereas exceptions are caused by the
occurrence of unusual conditions during a thread’s execution. Mach’s general-
purpose exception facility is used for error detection and debugger support.

12 Appendix D The Mach System

This facility is also useful for other functions, such as taking a core dump of
a bad task, allowing tasks to handle their own errors (mostly arithmetic), and
emulating instructions not implemented in hardware.

Mach supports two different granularities of exception handling. Error
handling is supported by per-thread exception handling, whereas debuggers
use per-task handling. It makes little sense to try to debug only one thread or to
have exceptions frommultiple threads invokemultiple debuggers. Aside from
this distinction, the only difference between the two types of exceptions lies in
their inheritance fromaparent task. Task-wide exception-handling facilities are
passed from the parent to child tasks, so debuggers are able to manipulate an
entire tree of tasks. Error handlers are not inherited and default to no handler
at thread- and task-creation time. Finally, error handlers take precedence over
debuggers if the exceptions occur simultaneously. The reason for this approach
is that error handlers are normally part of the task and therefore should execute
normally even in the presence of a debugger.

Exception handling proceeds as follows:

• The victim thread causes notification of an exception’s occurrence via a
raise() RPC message sent to the handler.

• The victim then calls a routine to wait until the exception is handled.

• The handler receives notification of the exception, usually including infor-
mation about the exception, the thread, and the task causing the exception.

• The handler performs its function according to the type of exception. The
handler’s action involves clearing the exception, causing the victim to
resume, or terminating the victim thread.

To support the execution of BSD programs, Mach needs to support BSD-
style signals. Signals provide software-generated interrupts and exceptions.
Unfortunately, signals are of limited functionality in multithreaded operating
systems. The first problem is that, in UNIX, a signal’s handler must be a routine
in the process receiving the signal. If the signal is caused by a problem in the
process itself (for example, a division by 0), the problem cannot be remedied,
because a process has limited access to its own context. A second, more trou-
blesome aspect of signals is that they were designed for only single-threaded
programs. For instance, itmakes no sense for all threads in a task to get a signal,
but how can a signal be seen by only one thread?

Because the signal system must work correctly with multithreaded appli-
cations for Mach to run 4.3 BSD programs, signals could not be abandoned.
Producing a functionally correct signal package required several rewrites of
the code, however. A final problem with UNIX signals is that they can be lost.
This loss occurs when another signal of the same type occurs before the first is
handled. Mach exceptions are queued as a result of their RPC implementation.

Externally generated signals, including those sent from one BSD process to
another, are processed by the BSD server section of the Mach 2.5 kernel. Their
behavior is therefore the same as it is under BSD. Hardware exceptions are a
different matter, because BSD programs expect to receive hardware exceptions
as signals. Therefore, a hardware exception caused by a thread must arrive at
the thread as a signal. So that this result is produced, hardware exceptions are

D.5 Interprocess Communication 13

converted to exception RPCs. For tasks and threads that do not make explicit
use of theMach exception-handling facility, the destination of this RPC defaults
to an in-kernel task. This task has only one purpose: Its thread runs in a
continuous loop, receiving the exception RPCs. For each RPC, it converts the
exception into the appropriate signal,which is sent to the thread that caused the
hardware exception. It then completes the RPC, clearing the original exception
condition.With the completion of the RPC, the initiating thread reenters the run
state. It immediately sees the signal and executes its signal-handling code. In
this manner, all hardware exceptions begin in a uniform way—as exception
RPCs. Threads not designed to handle such exceptions, however, receive the
exceptions as they would on a standard BSD system—as signals. In Mach
3.0, the signal-handling code is moved entirely into a server, but the overall
structure and flow of control is similar to those of Mach 2.5.

D.5 Interprocess Communication

Most commercial operating systems, such as UNIX, provide communication
between processes and between hosts with fixed, global names (or Internet
addresses). There is no location independence of facilities, because any remote
system needing to use a facility must know the name of the system providing
that facility. Usually, data in the messages are untyped streams of bytes. Mach
simplifies this picture by sending messages between location-independent
ports. The messages contain typed data for ease of interpretation. All BSD
communication methods can be implemented with this simplified system.

The two components of Mach IPC are ports and messages. Almost every-
thing in Mach is an object, and all objects are addressed via their commu-
nication ports. Messages are sent to these ports to initiate operations on the
objects by the routines that implement the objects. By depending on only ports
and messages for all communication, Mach delivers location independence of
objects and security of communication. Data independence is provided by the
NetMsgServer task (Section D.5.3).

Mach ensures security by requiring that message senders and receivers
have rights. Aright consists of a port name and a capability—send or receive—
on that port, and is much like a capability in object-oriented systems. Only one
task may have receive rights to any given port, but many tasks may have send
rights. When an object is created, its creator also allocates a port to represent
the object and obtains the access rights to that port. Rights can be given out by
the creator of the object, including the kernel, and are passed in messages. If
the holder of a receive right sends that right in a message, the receiver of the
message gains the right, and the sender loses it. A task may allocate ports to
allow access to any objects it owns or for communication. The destruction of
either a port or the holder of the receive right causes the revocation of all rights
to that port, and the tasks holding send rights can be notified if desired.

D.5.1 Ports

Aport is implemented as a protected, bounded queue within the kernel of the
system on which the object resides. If a queue is full, a sender may abort the

14 Appendix D The Mach System

send,wait for a slot to become available in the queue, or have the kernel deliver
the message.

Several system calls provide the port with the following functionalities:

• Allocate a new port in a specified task and give the caller’s task all access
rights to the new port. The port name is returned.

• Deallocate a task’s access rights to a port. If the task holds the receive right,
the port is destroyed, and all other tasks with send rights are, potentially,
notified.

• Get the current status of a task’s port.

• Create a backup port, which is given the receive right for a port if the task
containing the receive right requests its deallocation or terminates.

When a task is created, the kernel creates several ports for it. The function
task self() returns the name of the port that represents the task in calls to the
kernel. For instance, to allocate a new port, a task calls port allocate()with
task self() as the name of the task that will own the port. Thread creation
results in a similar thread self() thread kernel port. This scheme is similar
to the standard process-ID concept found in UNIX. Another port is returned by
task notify(); this is the port towhich the kernel will send event-notification
messages (such as notifications of port terminations).

Ports can also be collected into port sets. This facility is useful if one thread
is to service requests coming in on multiple ports—for example, for multiple
objects. A port may be a member of no more than one port set at a time.
Furthermore, if a port is in a set, it may not be used directly to receivemessages.
Instead, messages will be routed to the port set’s queue. A port set may not be
passed in messages, unlike a port. Port sets are objects that serve a purpose
similar to the 4.3 BSD select() system call, but they are more efficient.

D.5.2 Messages

A message consists of a fixed-length header and a variable number of typed
data objects. The header contains the destination’s port name, the name of
the reply port to which return messages should be sent, and the length of the
message (Figure D.5). The data in the message (or in-line data) were limited
to less than 8 KB in Mach 2.5 systems, but Mach 3.0 has no limit. Each data
section may be a simple type (numbers or characters), port rights, or pointers
to out-of-line data. Each section has an associated type, so that the receiver can
unpack the data correctly even if it uses a byte ordering different from that
used by the sender. The kernel also inspects the message for certain types of
data. For instance, the kernel must process port information within a message,
either by translating the port name into an internal port data structure address
or by forwarding it for processing to the NetMsgServer (Section D.5.3).

The use of pointers in a message provides the means to transfer the entire
address space of a task in one single message. The kernel also must process
pointers to out-of-line data, since a pointer to data in the sender’s address
space would be invalid in the receiver’s—especially if the sender and receiver
reside on different systems. Generally, systems send messages by copying the
data from the sender to the receiver. Because this technique can be inefficient,
especially for large messages, Mach takes a different approach. The data refer-

D.5 Interprocess Communication 15

destination port
reply port
size/operation
pure typed data
port rights
out-of-line-data

message control

memory cache object memory cache object

port

message queue

port

messagemessage

• • •

Figure D.5 Mach messages.

enced by a pointer in a message being sent to a port on the same system are
not copied between the sender and the receiver. Instead, the address map of
the receiving task is modified to include a copy-on-write copy of the pages of
themessage. This operation ismuch faster than a data copy andmakesmessage
passing more efficient. In essence, message passing is implemented via virtual
memory management.

In Version 2.5, this operation was implemented in two phases. A pointer
to a region of memory caused the kernel to map that region into its own
space temporarily, setting the sender’s memory map to copy-on-write mode
to ensure that any modifications did not affect the original version of the
data. When a message was received at its destination, the kernel moved its
mapping to the receiver’s address space, using a newly allocated region of
virtual memory within that task.

In Version 3, this processwas simplified. The kernel creates a data structure
that would be a copy of the region if it were part of an addressmap. On receipt,
this data structure is added to the receiver’smap and becomes a copy accessible
to the receiver.

The newly allocated regions in a task do not need to be contiguous with
previous allocations, so Mach virtual memory is said to be sparse, consisting
of regions of data separated by unallocated addresses. A full message transfer
is shown in Figure D.6.

D.5.3 The NetMsgServer

For a message to be sent between computers, the message’s destination must
be located, and the message must be transmitted to the destination. UNIX tra-
ditionally leaves these mechanisms to the low-level network protocols, which
require the use of statically assigned communication endpoints (for example,

16 Appendix D The Mach System

send operation

B

P1

kernel mapA map B map

A

receive operation

B

P1

kernel mapA map B map

A

Figure D.6 Mach message transfer.

the port number for services based on TCP or UDP). One of Mach’s tenets is
that all objects within the system are location independent and that the loca-
tion is transparent to the user. This tenet requires Mach to provide location-
transparent naming and transport to extend IPC across multiple computers.

This naming and transport are performed by theNetworkMessage Server
(NetMsgServer), a user-level, capability-based networking daemon that for-
wards messages between hosts. It also provides a primitive network-wide
name service that allows tasks to register ports for lookup by tasks on any other
computer in the network. Mach ports can be transferred only in messages, and
messagesmust be sent to ports. The primitive name service solves the problem
of transferring the first port. Subsequent IPC interactions are fully transparent,
because the NetMsgServer tracks all rights and out-of-line memory passed
in intercomputer messages and arranges for the appropriate transfers. The
NetMsgServers maintain among themselves a distributed database of port
rights that have been transferred between computers and of the ports to which
these rights correspond.

The kernel uses the NetMsgServer when a message needs to be sent to
a port that is not on the kernel’s computer. Mach’s kernel IPC is used to
transfer the message to the local NetMsgServer. The NetMsgServer then uses
whatever network protocols are appropriate to transfer the message to its peer
on the other computer. The notion of a NetMsgServer is protocol independent,
and NetMsgServers have been built to use various protocols. Of course, the
NetMsgServers involved in a transfer must agree on the protocol used. Finally,
the NetMsgServer on the destination computer uses that kernel’s IPC to send
the message to the correct destination task.

The ability to extend local IPC transparently across nodes is supported by
the use of proxy ports. When a send right is transferred from one computer to
another, the NetMsgServer on the destination computer creates a new port,
or proxy, to represent the original port at the destination. Messages sent to
this proxy are received by the NetMsgServer and are forwarded transparently

D.5 Interprocess Communication 17

to the original port. This procedure is one example of how NetMsgServers
cooperate to make a proxy indistinguishable from the original port.

Because Mach is designed to function in a network of heterogeneous sys-
tems, it must provide a way for systems to send data formatted in a way that is
understandable by both the sender and the receiver. Unfortunately, computers
differ in the formats they use to store various types of data. For instance, an
integer on one systemmight take 2 bytes to store, and the most significant byte
might be stored before the least significant one. Another systemmight reverse
this ordering. The NetMsgServer therefore uses the type information stored in
a message to translate the data from the sender’s to the receiver’s format. In
this way, all data are represented correctly when they reach their destination.

The NetMsgServer on a given computer accepts RPCs that add, look up,
and remove network ports from the NetMsgServer’s name service. As a secu-
rity precaution, a port value provided in an add request for a port must match
that in the remove request for a thread to ask for a port name to be removed
from the database.

As an example of theNetMsgServer’s operation, consider a thread on node
A sending a message to a port that happens to be in a task on node B. The
program simply sends a message to a port to which it has a send right. The
message is first passed to the kernel, which delivers it to its first recipient,
the NetMsgServer on node A. The NetMsgServer then contacts (through its
database information) the NetMsgServer on node B and sends the message.
The NetMsgServer on node B presents the message to the kernel with the
appropriate local port for node B. The kernel finally provides the message to
the receiving task when a thread in that task executes a msg receive() call.
This sequence of events is shown in Figure D.7.

Mach 3.0 provides an alternative to the NetMsgServer as part of its
improved support for NORMAmultiprocessors. The NORMA IPC subsystem of
Mach 3.0 implements functionality similar to the NetMsgServer directly in the

sender

kernel

system A

user
process

NetMsg-
server

receiver

kernel

system B

user
process

NetMsg-
server

Figure D.7 Network IPC forwarding by NetMsgServer.

18 Appendix D The Mach System

Mach kernel, providing much more efficient internode IPC for multicomputers
with fast interconnection hardware. For example, the time-consuming copying
of messages between the NetMsgServer and the kernel is eliminated. Use of
the NORMA IPC does not preclude use of the NetMsgServer; the NetMsgServer
can still be used to provide Mach IPC service over networks that link a NORMA
multiprocessor to other computers. In addition to the NORMA IPC, Mach 3.0
also provides support for memory management across a NORMA system and
enables a task in such a system to create child tasks on nodes other than its
own. These features support the implementation of a single-system-image
operating system on a NORMA multiprocessor. The multiprocessor behaves
like one large system rather than an assemblage of smaller systems (for both
users and applications).

D.5.4 Synchronization Through IPC

The IPC mechanism is extremely flexible and is used throughout Mach. For
example, it may be used for thread synchronization. A port may be used as a
synchronization variable and may have n messages sent to it for n resources.
Any thread wishing to use a resource executes a receive call on that port. The
threadwill receive amessage if the resource is available. Otherwise, it will wait
on the port until a message is available there. To return a resource after use, the
thread can send a message to the port. In this regard, receiving is equivalent to
the semaphore operation wait(), and sending is equivalent to signal(). This
method can be used for synchronizing semaphore operations among threads in
the same task, but it cannot be used for synchronization among tasks, because
only one task may have receive rights to a port. For more general-purpose
semaphores, a simple daemon can be written to implement the same method.

D.6 Memory Management

Given the object-oriented nature of Mach, it is not surprising that a principal
abstraction in Mach is the memory object. Memory objects are used to manage
secondary storage and generally represent files, pipes, or other data that are
mapped into virtual memory for reading and writing (Figure D.8). Memory
objectsmay be backed by user-levelmemorymanagers, which take the place of
the more traditional kernel-incorporated virtual memory pager found in other
operating systems. In contrast to the traditional approach of having the kernel
manage secondary storage, Mach treats secondary-storage objects (usually
files) as it does all other objects in the system. Each object has a port associated
with it and may be manipulated by messages sent to its port. Memory objects
—unlike the memory-management routines in monolithic, traditional kernels
—allow easy experimentation with new memory-manipulation algorithms.

D.6.1 Basic Structure

The virtual address space of a task is generally sparse, consisting ofmany holes
of unallocated space. For instance, a memory-mapped file is placed in some set
of addresses. Largemessages are also transferred as sharedmemory segments.
For each of these segments, a section of virtual memory address is used to
provide the threads with access to the message. As new items are mapped or

D.6 Memory Management 19

previous entry

address space
start/end

next entry

inheritance

protection
current/max

object

offset therein

map entry

text initialized
data

uninitialized
data stack

head tail

user
address
space

virtual memory
object

port for
secondary

storage

cached
 pages

Figure D.8 Mach virtual memory task address map.

removed from the address space, holes of unallocated memory appear in the
address space.

Mach makes no attempt to compress the address space, although a task
may fail (or crash) if it has no room for a requested region in its address space.
Given that address spaces are 4 GB or more, this limitation is not currently a
problem. However, maintaining a regular page table for a 4-GB address space
for each task, especially one with holes in it, would use excessive amounts of
memory (1 MB or more). The key to sparse address spaces is that page-table
space is used only for currently allocated regions.When a page fault occurs, the
kernel must check to see whether the page is in a valid region, rather than sim-
ply indexing into the page table and checking the entry. Although the resulting
lookup ismore complex, the benefits of reducedmemory-storage requirements
and simpler address-space maintenance make the approach worthwhile.

Mach also has system calls to support standard virtual memory function-
ality, including the allocation, deallocation, and copying of virtual memory.
When allocating a new virtual memory object, the thread may provide an
address for the object or may let the kernel choose the address. Physical mem-
ory is not allocated until pages in this object are accessed. The object’s backing
store is managed by the default pager (Section D.6.2). Virtual memory objects

20 Appendix D The Mach System

are also allocated automatically when a task receives a message containing
out-of-line data.

Associated system calls return information about a memory object in a
task’s address space, change the access protection of the object, and specify
how an object is to be passed to child tasks at the time of their creation (shared,
copy-on-write, or not present).

D.6.2 User-Level Memory Managers

A secondary-storage object is usually mapped into the virtual address space
of a task. Mach maintains a cache of memory-resident pages of all mapped
objects, as in other virtual memory implementations. However, a page fault
occurring when a thread accesses a nonresident page is executed as a message
to the object’s port. The concept that a memory object can be created and
serviced by nonkernel tasks (unlike threads, for instance, which are created
and maintained only by the kernel) is important. The end result is that, in the
traditional sense, memory can be paged by user-written memory managers.
When the object is destroyed, it is up to the memory manager to write back
any changed pages to secondary storage. No assumptions are made by Mach
about the content or importance of memory objects, so the memory objects are
independent of the kernel.

In several circumstances, user-level memory managers are insufficient.
For instance, a task allocating a new region of virtual memory might not
have a memory manager assigned to that region, since it does not represent a
secondary-storage object (butmust be paged), or amemorymanagermight fail
to perform pageout. Mach itself also needs a memory manager to take care of
its memory needs. For these cases, Mach provides a default memory manager.
The Mach 2.5 default memory manager uses the standard file system to store
data that must be written to disk, rather than requiring a separate swap space,
as in 4.3 BSD. In Mach 3.0 (and OSF/1), the default memory manager is capable
of using either files in a standard file system or dedicated disk partitions. The
default memorymanager has an interface similar to that of the user-level ones,
but with some extensions to support its role as the memory manager that can
be relied on to perform pageout when user-level managers fail to do so.

Pageout policy is implemented by an internal kernel thread, the pageout
daemon. Apaging algorithm based on FIFOwith second chance (Section 10.4.5)
is used to select pages for replacement. The selected pages are sent to the
appropriate manager (either user level or default) for actual pageout. A user-
level manager may be more intelligent than the default manager, and it may
implement a different paging algorithm suitable to the object it is backing (that
is, by selecting some other page and forcibly paging it out). If a user-level
manager fails to reduce the resident set of pages when asked to do so by the
kernel, the default memorymanager is invoked, and it pages out the user-level
manager to reduce the user-level manager’s resident set size. Should the user-
level manager recover from the problem that prevented it from performing its
own pageouts, it will touch these pages (causing the kernel to page them in
again) and can then page them out as it sees fit.

If a thread needs access to data in a memory object (for instance, a file),
it invokes the vm map() system call. Included in this system call is a port
that identifies the object and the memory manager that is responsible for the

D.6 Memory Management 21

region. The kernel executes calls on this port when data are to be read or
written in that region. An added complexity is that the kernel makes these calls
asynchronously, since it would not be reasonable for the kernel to be waiting
on a user-level thread. Unlike the situation with pageout, the kernel has no
recourse if its request is not satisfied by the external memory manager. The
kernel has no knowledge of the contents of an object or of how that object must
be manipulated.

Memory managers are responsible for the consistency of the contents of
a memory object mapped by tasks on different machines. (Tasks on a single
machine share a single copy of a mappedmemory object.) Consider a situation
in which tasks on two different machines attempt to modify the same page
of an object at the same time. It is up to the manager to decide whether these
modifications must be serialized. A conservative manager implementing strict
memory consistency would force the modifications to be serialized by grant-
ing write access to only one kernel at a time. A more sophisticated manager
could allow both accesses to proceed concurrently (for example, if themanager
knew that the two tasks were modifying distinct areas within the page and
that it could merge the modifications successfully at some future time). Most
external memory managers written for Mach (for example, those implement-
ing mapped files) do not implement logic for dealing with multiple kernels,
due to the complexity of such logic.

When the first vm map() call is made on a memory object, the kernel sends
a message to the memory manager port passed in the call, invoking the mem-
ory manager init() routine, which the memory manager must provide as
part of its support of a memory object. The two ports passed to the mem-
ory manager are a control port and a name port. The control port is used
by the memory manager to provide data to the kernel—for example, pages
to be made resident. Name ports are used throughout Mach. They do not
receive messages but are used simply as points of reference and comparison.
Finally, the memory object must respond to a memory manager init() call
with a memory object set attributes() call to indicate that it is ready to
accept requests. When all tasks with send rights to a memory object relinquish
those rights, the kernel deallocates the object’s ports, thus freeing the memory
manager and memory object for destruction.

Several kernel calls are needed to support external memorymanagers. The
vm map() call was just discussed. In addition, some commands get and set
attributes and provide page-level locking when it is required (for instance,
after a page fault has occurred but before the memory manager has returned
the appropriate data). Another call is used by the memory manager to pass a
page (or multiple pages, if read-ahead is being used) to the kernel in response
to a page fault. This call is necessary since the kernel invokes the memory
manager asynchronously. Finally, several calls allow the memory manager to
report errors to the kernel.

Thememorymanager itselfmust provide support for several calls so that it
can support an object. We have already discussed memory object init() and
others. When a thread causes a page fault on a memory object’s page, the ker-
nel sends a memory object data request() to the memory object’s port on
behalf of the faulting thread. The thread is placed in a wait state until the mem-
ory manager either returns the page in a memory object data provided()
call or returns an appropriate error to the kernel. Any of the pages that have

22 Appendix D The Mach System

been modified, or any “precious pages” that the kernel needs to remove from
resident memory (due to page aging, for instance), are sent to the memory
object via memory object data write(). Precious pages are pages that may
not have been modified but that cannot be discarded as they otherwise would
be because the memory manager no longer retains a copy. The memory man-
ager declares these pages to be precious and expects the kernel to return them
when they are removed frommemory. Precious pages save unnecessary dupli-
cation and copying of memory.

In the current version, Mach does not allow external memory managers
to affect the page-replacement algorithm directly. Mach does not export the
memory-access information that would be needed for an external task to select
the least recently used page, for instance. Methods of providing such informa-
tion are currently under investigation. An external memory manager is still
useful for a variety of reasons, however:

• It may reject the kernel’s replacement victim if it knows of a better candi-
date (for instance, MRU page replacement).

• It may monitor the memory object it is backing and request pages to be
paged out before the memory usage invokes Mach’s pageout daemon.

• It is especially important in maintaining consistency of secondary storage
for threads on multiple processors, as we show in Section D.6.3.

• It can control the order of operations on secondary storage to enforce
consistency constraints demanded by database management systems. For
example, in transaction logging, transactions must be written to a log file
on disk before they modify the database data.

• It can control mapped file access.

D.6.3 Shared Memory

Mach uses shared memory to reduce the complexity of various system facili-
ties, as well as to provide these features in an efficient manner. Sharedmemory
generally provides extremely fast interprocess communication, reduces over-
head in file management, and helps to support multiprocessing and database
management. Mach does not use shared memory for all these traditional
shared-memory roles, however. For instance, all threads in a task share that
task’s memory, so no formal shared-memory facility is needed within a task.
However, Machmust still provide traditional shared memory to support other
operating-system constructs, such as the UNIX fork() system call.

It is obviously difficult for tasks onmultiplemachines to sharememory and
to maintain data consistency. Mach does not try to solve this problem directly;
rather, it provides facilities to allow the problem to be solved. Mach supports
consistent shared memory only when the memory is shared by tasks running
on processors that sharememory. Aparent task is able to declarewhich regions
of memory are to be inherited by its children and which are to be readable
–writable. This scheme is different from copy-on-write inheritance, in which
each task maintains its own copy of any changed pages. A writable object is
addressed from each task’s address map, and all changes are made to the same
copy. The threads within the tasks are responsible for coordinating changes
to memory so that they do not interfere with one another (by writing to the

D.7 Programmer Interface 23

same location concurrently). This coordination can be done through normal
synchronization methods: critical sections or mutual-exclusion locks.

For the case of memory shared among separate machines, Mach allows the
use of external memory managers. If a set of unrelated tasks wishes to share a
section of memory, the tasks can use the same external memory manager and
access the same secondary-storage areas through it. The implementor of this
system would need to write the tasks and the external pager. This pager could
be as simple or as complicated as needed. A simple implementation would
allow no readers while a page was being written to. Any write attempt would
cause the pager to invalidate the page in all tasks currently accessing it. The
pager would then allow the write and would revalidate the readers with the
new version of the page. The readers would simply wait on a page fault until
the page again became available. Mach provides such a memory manager: the
Network Memory Server (NetMemServer). For multicomputers, the NORMA
configuration of Mach 3.0 provides similar support as a standard part of the
kernel. This XMM subsystem allows multicomputer systems to use external
memory managers that do not incorporate logic for dealing with multiple
kernels. The XMM subsystem is responsible for maintaining data consistency
among multiple kernels that share memory and makes these kernels appear
to be a single kernel to the memory manager. The XMM subsystem also imple-
ments virtual copy logic for the mapped objects that it manages. This virtual
copy logic includes both copy-on-reference amongmulticomputer kernels and
sophisticated copy-on-write optimizations.

D.7 Programmer Interface

Aprogrammer can work at several levels within Mach. There is, of course, the
system-call level, which, in Mach 2.5, is equivalent to the 4.3 BSD system-call
interface. Version 2.5 includes most of 4.3 BSD as one thread in the kernel. A
BSD system call traps to the kernel and is serviced by this thread on behalf
of the caller, much as standard BSD would handle it. The emulation is not
multithreaded, so it has limited efficiency.

Mach 3.0 has moved from the single-server model to support of multiple
servers. It has therefore become a true microkernel without the full features
normally found in a kernel. Rather, full functionality can be provided via emu-
lation libraries, servers, or a combination of the two. In keepingwith the defini-
tion of amicrokernel, the emulation libraries and servers run outside the kernel
at user level. In this way, multiple operating systems can run concurrently on
one Mach 3.0 kernel.

An emulation library is a set of routines that lives in a read-only part of a
program’s address space. Any operating-system calls the program makes are
translated into subroutine calls to the library. Single-user operating systems,
such as MS-DOS and the Macintosh operating system, have been implemented
solely as emulation libraries. For efficiency reasons, the emulation library lives
in the address space of the program needing its functionality; in theory, how-
ever, it could be a separate task.

More complex operating systems are emulated through the use of libraries
and one ormore servers. System calls that cannot be implemented in the library
are redirected to the appropriate server. Servers can be multithreaded for

24 Appendix D The Mach System

improved efficiency; BSD and OSF/1 are implemented as single multithreaded
servers. Systems can be decomposed into multiple servers for greater modu-
larity.

Functionally, a system call starts in a task and passes through the kernel
before being redirected, if appropriate, to the library in the task’s address space
or to a server. Although this extra transfer of control decreases the efficiency of
Mach, this decrease is balanced to some extent by the ability ofmultiple threads
to execute BSD-like code concurrently.

At the next higher programming level is the C threads package. This pack-
age is a run-time library that provides a C language interface to the basic Mach
threads primitives. It provides convenient access to these primitives, includ-
ing routines for the forking and joining of threads, mutual exclusion through
mutex variables (Section D.4.2), and synchronization through use of condi-
tion variables. Unfortunately, it is not appropriate for the C threads package
to be used between systems that share no memory (NORMA systems), since it
depends on shared memory to implement its constructs. There is currently no
equivalent of C threads for NORMAsystems. Other run-time libraries have been
written for Mach, including threads support for other languages.

Although the use of primitives makes Mach flexible, it also makes many
programming tasks repetitive. For instance, significant amounts of code are
associated with sending and receiving messages in each task that uses mes-
sages (which, in Mach, is most tasks). The designers of Mach therefore provide
an interface generator (or stub generator) calledMIG. MIG is essentially a com-
piler that takes as input a definition of the interface to be used (declarations of
variables, types, and procedures) and generates the RPC interface code needed
to send and receive the messages fitting this definition and to connect the
messages to the sending and receiving threads.

D.8 Summary

The Mach operating system is designed to incorporate the many recent inno-
vations in operating-system research to produce a fully functional, technically
advanced operating system.

TheMach operating systemwas designedwith three critical goals inmind:

• Emulate 4.3 BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.

• Have amodern operating system that supportsmanymemorymodels and
parallel and distributed computing.

• Design a kernel that is simpler and easier to modify than is 4.3 BSD.

As we have shown, Mach is well on its way to achieving these goals.
Mach 2.5 includes 4.3 BSD in its kernel, which provides the emulation

needed but enlarges the kernel. This 4.3 BSD code has been rewritten to provide
the same 4.3 functionality but to use the Mach primitives. This change allows
the 4.3 BSD support code to run in user space on a Mach 3.0 system.

Further Reading 25

Mach uses lightweight processes, in the form of multiple threads of exe-
cution within one task (or address space), to support multiprocessing and
parallel computation. Its extensive use of messages as the only communica-
tion method ensures that protection mechanisms are complete and efficient.
By integrating messages with the virtual memory system, Mach also ensures
that messages can be handled efficiently. Finally, by having the virtual memory
systemusemessages to communicate with the daemonsmanaging the backing
store,Mach provides great flexibility in the design and implementation of these
memory-object-managing tasks.

By providing low-level, or primitive, system calls from which more com-
plex functions can be built,Mach reduces the size of the kernelwhile permitting
operating-system emulation at the user level, much like IBM’s virtual machine
systems.

Further Reading

The Accent operating systemwas described by [Rashid and Robertson (1981)].
A historical overview of the progression from an even earlier system, RIG,
through Accent to Mach was given by [Rashid (1986)]. General discussions
concerning the Mach model were offered by [Tevanian et al. (1989)].

[Accetta et al. (1986)] presented an overviewof the original design ofMach.
The Mach scheduler was described in detail by [Tevanian et al. (1987a)] and
[Black (1990)]. An early version of the Mach shared memory and memory-
mapping system was presented [Tevanian et al. (1987b)].

Bibliography

[Accetta et al. (1986)] M. Accetta, R. Baron, W. Bolosky, D. B. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: ANew Kernel Foundation for UNIX Devel-
opment”, Proceedings of the Summer USENIX Conference (1986), pages 93–112.

[Black (1990)] D. L. Black, “Scheduling Support for Concurrency and Paral-
lelism in the Mach Operating System”, IEEE Computer, Volume 23, Number 5
(1990), pages 35–43.

[Rashid (1986)] R. F. Rashid, “From RIG to Accent to Mach: The Evolution of a
Network Operating System”, Proceedings of the ACM/IEEE Computer Society, Fall
Joint Computer Conference (1986), pages 1128–1137.

[Rashid and Robertson (1981)] R. Rashid and G. Robertson, “Accent: A Com-
munication-Oriented Network Operating System Kernel”, Proceedings of the
ACM Symposium on Operating System Principles (1981), pages 64–75.

[Tevanian et al. (1987a)] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black,
E. Cooper, andM.W. Young, “Mach Threads and the Unix Kernel: The Battle for
Control”, Proceedings of the Summer USENIX Conference (1987).

[Tevanian et al. (1987b)] A. Tevanian, Jr., R. F. Rashid,M.W. Young, D. B. Golub,
M. R. Thompson, W. Bolosky, and R. Sanzi, “A UNIX Interface for Shared

http://doi.acm.org/10.1145/800216.806593
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?doid=30401.30404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://dl.acm.org/citation.cfm?doid=30401.30404
http://dl.acm.org/citation.cfm?doid=30401.30404
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=324493.325071
http://doi.acm.org/10.1145/800216.806593
http://doi.acm.org/10.1145/800216.806593
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach

26 Appendix D The Mach System

Memory and Memory Mapped Files Under Mach”, Technical report, Carnegie-
Mellon University (1987).

[Tevanian et al. (1989)] A. Tevanian, Jr., and B. Smith, “Mach: The Model for
Future Unix”, Byte (1989).

http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?id=77139.77171

	CPU Scheduling
	Basic Concepts
	Scheduling Criteria
	Scheduling Algorithms
	Thread Scheduling
	Multi-Processor Scheduling
	Real-Time CPU Scheduling
	Operating-System Examples
	Algorithm Evaluation
	Summary
	Exercises
	Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

