
BAppendix

Windows 7

Updated by Dave Probert

The Microsoft Windows 7 operating system is a 32-/64-bit preemptive mul-
titasking client operating system for microprocessors implementing the Intel
IA-32 and AMD64 instruction set architectures (ISAs).Microsoft’s corresponding
server operating system, Windows Server 2008 R2, is based on the same code
as Windows 7 but supports only the 64-bit AMD64 and IA64 (Itanium) ISAs.
Windows 7 is the latest in a series of Microsoft operating systems based on
its NT code, which replaced the earlier systems based on Windows 95/98. In
this appendix, we discuss the key goals of Windows 7, the layered architecture
of the system that has made it so easy to use, the file system, the networking
features, and the programming interface.

CHAPTER OBJECTIVES

• Explore the principles underlying Windows 7’s design and the specific
components of the system.

• Provide a detailed discussion of the Windows 7 file system.

• Illustrate the networking protocols supported in Windows 7.

• Describe the interface available in Windows 7 to system and application
programmers.

• Describe the important algorithms implemented with Windows 7.

B.1 History

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating
system, which was written in assembly language for single-processor Intel
80286 systems. In 1988, Microsoft decided to end the joint effort with IBM
and develop its own “new technology” (or NT) portable operating system to
support both the OS/2 and POSIX application-programming interfaces (APIs). In

1

2 Appendix B Windows 7

October 1988, Dave Cutler, the architect of the DEC VAX/VMS operating system,
was hired and given the charter of buildingMicrosoft’s new operating system.

Originally, the team planned to use the OS/2 API as NT’s native environ-
ment, but during development, NT was changed to use a new 32-bit Windows
API (called Win32), based on the popular 16-bit API used in Windows 3.0. The
first versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced
Server. (At that time, 16-bit Windows was at Version 3.1.) Windows NT Ver-
sion 4.0 adopted the Windows 95 user interface and incorporated Internet
web-server andweb-browser software. In addition, user-interface routines and
all graphics code were moved into the kernel to improve performance, with
the side effect of decreased system reliability. Although previous versions of
NT had been ported to other microprocessor architectures, the Windows 2000
version, released in February 2000, supported only Intel (and compatible)
processors due to marketplace factors. Windows 2000 incorporated signifi-
cant changes. It added Active Directory (an X.500-based directory service),
better networking and laptop support, support for plug-and-play devices, a
distributed file system, and support for more processors and more memory.

In October 2001, Windows XP was released as both an update to the Win-
dows 2000 desktop operating system and a replacement for Windows 95/98.
In 2002, the server edition of Windows XP became available (called Windows
.Net Server). Windows XP updated the graphical user interface (GUI) with
a visual design that took advantage of more recent hardware advances and
many new ease-of-use features. Numerous features were added to automat-
ically repair problems in applications and the operating system itself. As a
result of these changes, Windows XP provided better networking and device
experience (including zero-configuration wireless, instant messaging, stream-
ing media, and digital photography/video), dramatic performance improve-
ments for both the desktop and largemultiprocessors, and better reliability and
security than earlier Windows operating systems.

The long-awaited update to Windows XP, called Windows Vista, was
released in November 2006, but it was not well received. Although Win-
dows Vista included many improvements that later showed up in Windows
7, these improvements were overshadowed by Windows Vista’s perceived
sluggishness and compatibility problems. Microsoft responded to criticisms
of Windows Vista by improving its engineering processes and working more
closelywith themakers ofWindows hardware and applications. The resultwas
Windows 7, which was released in October 2009, along with corresponding
server editions of Windows. Among the significant engineering changes is the
increased use of execution tracing rather than counters or profiling to analyze
system behavior. Tracing runs constantly in the system, watching hundreds of
scenarios execute. When one of these scenarios fails, or when it succeeds but
does not perform well, the traces can be analyzed to determine the cause.

Windows 7 uses a client–server architecture (like Mach) to implement two
operating-system personalities, Win32 and POSIX, with user-level processes
called subsystems. (At one time, Windows also supported an OS/2 subsystem,
but it was removed in Windows XP due to the demise of OS/2.) The subsystem
architecture allows enhancements to be made to one operating-system person-
ality without affecting the application compatibility of the other. Although the
POSIX subsystem continues to be available for Windows 7, the Win32 API has
become very popular, and the POSIX APIs are used by only a few sites. The sub-
system approach continues to be interesting to study from an operating-system

B.2 Design Principles 3

perspective, but machine-virtualization technologies are now becoming the
dominant way of running multiple operating systems on a single machine.

Windows 7 is a multiuser operating system, supporting simultaneous
access through distributed services or through multiple instances of the GUI
via the Windows terminal services. The server editions of Windows 7 support
simultaneous terminal server sessions from Windows desktop systems. The
desktop editions of terminal server multiplex the keyboard, mouse, and mon-
itor between virtual terminal sessions for each logged-on user. This feature,
called fast user switching, allows users to preempt each other at the console of
a PC without having to log off and log on.

We noted earlier that some GUI implementation moved into kernel mode
in Windows NT 4.0. It started to move into user mode again with Windows
Vista, which included the desktop window manager (DWM) as a user-mode
process. DWM implements the desktop compositing ofWindows, providing the
WindowsAero interface look on top of theWindows DirectX graphic software.
DirectX continues to run in the kernel, as does the code implementing Win-
dows’ previouswindowing and graphicsmodels (Win32k and GDI).Windows
7 made substantial changes to the DWM, significantly reducing its memory
footprint and improving its performance.

Windows XP was the first version of Windows to ship a 64-bit version (for
the IA64 in 2001 and the AMD64 in 2005). Internally, the native NT file system
(NTFS) and many of the Win32 APIs have always used 64-bit integers where
appropriate—so the major extension to 64-bit in Windows XP was support
for large virtual addresses. However, 64-bit editions of Windows also support
much larger physical memories. By the time Windows 7 shipped, the AMD64
ISAhad become available on almost all CPUs from both Intel andAMD. In addi-
tion, by that time, physical memories on client systems frequently exceeded
the 4-GB limit of the IA-32. As a result, the 64-bit version of Windows 7 is now
commonly installed on larger client systems. Because the AMD64 architecture
supports high-fidelity IA-32 compatibility at the level of individual processes,
32- and 64-bit applications can be freely mixed in a single system.

In the rest of our description ofWindows 7,wewill not distinguish between
the client editions of Windows 7 and the corresponding server editions. They
are based on the same core components and run the same binary files for
the kernel and most drivers. Similarly, although Microsoft ships a variety of
different editions of each release to address different market price points, few
of the differences between editions are reflected in the core of the system. In
this chapter, we focus primarily on the core components of Windows 7.

B.2 Design Principles

Microsoft’s design goals for Windows included security, reliability, Windows
and POSIX application compatibility, high performance, extensibility, portabil-
ity, and international support. Some additional goals, energy efficiency and
dynamic device support, have recently been added to this list. Next, we discuss
each of these goals and how it is achieved in Windows 7.

B.2.1 Security

Windows 7 security goals requiredmore than just adherence to the design stan-
dards that had enabled Windows NT 4.0 to receive a C2 security classification

4 Appendix B Windows 7

from the U.S. government. (A C2 classification signifies a moderate level of
protection from defective software and malicious attacks. Classifications were
defined by the Department of Defense Trusted Computer System Evaluation
Criteria, also known as the Orange Book.) Extensive code review and testing
were combined with sophisticated automatic analysis tools to identify and
investigate potential defects that might represent security vulnerabilities.

Windows bases security on discretionary access controls. System objects,
including files, registry settings, and kernel objects, are protected by access-
control lists (ACLs) (see Section 13.4.2). ACLs are vulnerable to user and pro-
grammer errors, however, as well as to the most common attacks on consumer
systems, in which the user is tricked into running code, often while browsing
the web. Windows 7 includes a mechanism called integrity levels that acts as
a rudimentary capability system for controlling access. Objects and processes
are marked as having low, medium, or high integrity. Windows does not allow
a process to modify an object with a higher integrity level, no matter what the
setting of the ACL.

Other security measures include address-space layout randomization
(ASLR), nonexecutable stacks and heaps, and encryption and digital signature
facilities. ASLR thwarts many forms of attack by preventing small amounts of
injected code from jumping easily to code that is already loaded in a process as
part of normal operation. This safeguard makes it likely that a system under
attack will fail or crash rather than let the attacking code take control.

Recent chips from both Intel and AMD are based on the AMD64 architec-
ture, which allows memory pages to be marked so that they cannot contain
executable instruction code. Windows tries to mark stacks and memory heaps
so that they cannot be used to execute code, thus preventing attacks in which
a program bug allows a buffer to overflow and then is tricked into executing
the contents of the buffer. This technique cannot be applied to all programs,
because some rely on modifying data and executing it. A column labeled “data
execution prevention” in the Windows task manager shows which processes
are marked to prevent these attacks.

Windows uses encryption as part of common protocols, such as those used
to communicate securely with websites. Encryption is also used to protect
user files stored on disk from prying eyes. Windows 7 allows users to easily
encrypt virtually awhole disk, aswell as removable storagedevices such asUSB
flash drives, with a feature called BitLocker. If a computer with an encrypted
disk is stolen, the thieves will need very sophisticated technology (such as an
electron microscope) to gain access to any of the computer’s files. Windows
uses digital signatures to sign operating system binaries so it can verify that the
files were produced byMicrosoft or another known company. In some editions
of Windows, a code integritymodule is activated at boot to ensure that all the
loaded modules in the kernel have valid signatures, assuring that they have
not been tampered with by an off-line attack.

B.2.2 Reliability

Windows matured greatly as an operating system in its first ten years, leading
toWindows 2000. At the same time, its reliability increased due to such factors
as maturity in the source code, extensive stress testing of the system, improved
CPU architectures, and automatic detection of many serious errors in drivers
from both Microsoft and third parties. Windows has subsequently extended

B.2 Design Principles 5

the tools for achieving reliability to include automatic analysis of source code
for errors, tests that include providing invalid or unexpected input parameters
(known as fuzzing) to detect validation failures, and an application version of
the driver verifier that applies dynamic checking for an extensive set of com-
mon user-mode programming errors. Other improvements in reliability have
resulted frommovingmore code out of the kernel and into user-mode services.
Windows provides extensive support for writing drivers in user mode. System
facilities that were once in the kernel and are now in user mode include the
Desktop Window Manager and much of the software stack for audio.

One of themost significant improvements in theWindows experience came
from adding memory diagnostics as an option at boot time. This addition is
especially valuable because so few consumer PCs have error-correcting mem-
ory. When bad RAM starts to drop bits here and there, the result is frustratingly
erratic behavior in the system. The availability of memory diagnostics has
greatly reduced the stress levels of users with bad RAM.

Windows 7 introduced a fault-tolerantmemory heap. The heap learns from
application crashes and automatically inserts mitigations into future execution
of an application that has crashed. This makes the application more reliable
even if it contains common bugs such as using memory after freeing it or
accessing past the end of the allocation.

Achieving high reliability in Windows is particularly challenging because
almost one billion computers run Windows. Even reliability problems that
affect only a small percentage of users still impact tremendous numbers of
human beings. The complexity of the Windows ecosystem also adds to the
challenges.Millions of instances of applications, drivers, and other software are
being constantly downloaded and run on Windows systems. Of course, there
is also a constant stream of malware attacks. As Windows itself has become
harder to attack directly, exploits increasingly target popular applications.

To copewith these challenges,Microsoft is increasingly relying on commu-
nications from customer machines to collect large amounts of data from the
ecosystem. Machines can be sampled to see how they are performing, what
software they are running, and what problems they are encountering. Cus-
tomers can send data to Microsoft when systems or software crashes or hangs.
This constant stream of data from customer machines is collected very care-
fully, with the users’ consent and without invading privacy. The result is that
Microsoft is building an ever-improving picture of what is happening in the
Windows ecosystem that allows continuous improvements through software
updates, as well as providing data to guide future releases of Windows.

B.2.3 Windows and POSIX Application Compatibility

As mentioned, Windows XP was both an update of Windows 2000 and a
replacement forWindows 95/98.Windows 2000 focused primarily on compat-
ibility for business applications. The requirements for Windows XP included a
much greater compatibility with the consumer applications that ran on Win-
dows 95/98. Application compatibility is difficult to achieve because many
applications check for a particular version of Windows, may depend to some
extent on the quirks of the implementation of APIs, may have latent application
bugs that were masked in the previous system, and so forth. Applications may

6 Appendix B Windows 7

also have been compiled for a different instruction set. Windows 7 implements
several strategies to run applications despite incompatibilities.

Like Windows XP, Windows 7 has a compatibility layer that sits between
applications and the Win32 APIs. This layer makes Windows 7 look (almost)
bug-for-bug compatible with previous versions of Windows. Windows 7, like
earlier NT releases, maintains support for running many 16-bit applications
using a thunking, or conversion, layer that translates 16-bit API calls into
equivalent 32-bit calls. Similarly, the 64-bit version of Windows 7 provides a
thunking layer that translates 32-bit API calls into native 64-bit calls.

TheWindows subsystemmodel allows multiple operating-system person-
alities to be supported.As noted earlier, although theAPImost commonly used
with Windows is the Win32 API, some editions of Windows 7 support a POSIX
subsystem. POSIX is a standard specification for UNIX that allowsmost available
UNIX-compatible software to compile and run without modification.

As a final compatibility measure, several editions of Windows 7 provide a
virtual machine that runs Windows XP insideWindows 7. This allows applica-
tions to get bug-for-bug compatibility with Windows XP.

B.2.4 High Performance

Windows was designed to provide high performance on desktop systems
(which are largely constrained by I/O performance), server systems (where the
CPU is often the bottleneck), and large multithreaded andmultiprocessor envi-
ronments (where locking performance and cache-line management are keys
to scalability). To satisfy performance requirements, NT used a variety of tech-
niques, such as asynchronous I/O, optimized protocols for networks, kernel-
based graphics rendering, and sophisticated caching of file-system data. The
memory-management and synchronization algorithms were designed with an
awareness of the performance considerations related to cache lines and multi-
processors.

Windows NT was designed for symmetrical multiprocessing (SMP); on a
multiprocessor computer, several threads can run at the same time, even in the
kernel. On each CPU, Windows NT uses priority-based preemptive scheduling
of threads. Except while executing in the kernel dispatcher or at interrupt
level, threads in any process running inWindows can be preempted by higher-
priority threads. Thus, the system responds quickly (see Chapter 5).

The subsystems that constitute Windows NT communicate with one
another efficiently through a local procedure call (LPC) facility that provides
high-performance message passing. When a thread requests a synchronous
service from another process through an LPC, the servicing thread is marked
ready, and its priority is temporarily boosted to avoid the scheduling delays
that would occur if it had to wait for threads already in the queue.

Windows XP further improved performance by reducing the code-path
length in critical functions, using better algorithms and per-processor data
structures, using memory coloring for non-uniform memory access (NUMA)
machines, and implementing more scalable locking protocols, such as queued
spinlocks. The new locking protocols helped reduce system bus cycles and
included lock-free lists and queues, atomic read–modify–write operations
(like interlocked increment), and other advanced synchronization techniques.

B.2 Design Principles 7

By the time Windows 7 was developed, several major changes had come
to computing. Client/server computing had increased in importance, so
an advanced local procedure call (ALPC) facility was introduced to provide
higher performance and more reliability than LPC. The number of CPUs and
the amount of physical memory available in the largest multiprocessors
had increased substantially, so quite a lot of effort was put into improving
operating-system scalability.

The implementation of SMP in Windows NT used bitmasks to represent
collections of processors and to identify, for example, which set of processors a
particular thread could be scheduled on. These bitmaskswere defined as fitting
within a single word of memory, limiting the number of processors supported
within a system to 64. Windows 7 added the concept of processor groups to
represent arbitrary numbers of CPUs, thus accommodating more CPU cores.
The number of CPU cores within single systems has continued to increase not
only because of more cores but also because of cores that support more than
one logical thread of execution at a time.

All these additional CPUs created a great deal of contention for the locks
used for scheduling CPUs andmemory.Windows 7 broke these locks apart. For
example, before Windows 7, a single lock was used by theWindows scheduler
to synchronize access to the queues containing threads waiting for events. In
Windows 7, each object has its own lock, allowing the queues to be accessed
concurrently. Also, many execution paths in the scheduler were rewritten to be
lock-free. This change resulted in good scalability performance for Windows
even on systems with 256 hardware threads.

Other changes are due to the increasing importance of support for par-
allel computing. For years, the computer industry has been dominated by
Moore’s Law, leading to higher densities of transistors that manifest them-
selves as faster clock rates for each CPU. Moore’s Law continues to hold true,
but limits have been reached that prevent CPU clock rates from increasing
further. Instead, transistors are being used to build more and more CPUs into
each chip. New programmingmodels for achieving parallel execution, such as
Microsoft’s Concurrency RunTime (ConcRT) and Intel’s Threading Building
Blocks (TBB), are being used to express parallelism in C++ programs. Where
Moore’s Law has governed computing for forty years, it now seems that
Amdahl’s Law, which governs parallel computing, will rule the future.

To support task-based parallelism, Windows 7 provides a new form of
user-mode scheduling (UMS). UMS allows programs to be decomposed into
tasks, and the tasks are then scheduled on the available CPUs by a scheduler
that operates in user mode rather than in the kernel.

The advent of multiple CPUs on the smallest computers is only part of
the shift taking place to parallel computing. Graphics processing units (GPUs)
accelerate the computational algorithms needed for graphics by using SIMD
architectures to execute a single instruction for multiple data at the same
time. This has given rise to the use of GPUs for general computing, not just
graphics. Operating-system support for software like OpenCL and CUDA is
allowing programs to take advantage of the GPUs. Windows supports use of
GPUs through software in its DirectX graphics support. This software, called
DirectCompute, allows programs to specify computational kernels using the
same HLSL (high-level shader language) programmingmodel used to program
the SIMD hardware for graphics shaders. The computational kernels run very

8 Appendix B Windows 7

quickly on the GPU and return their results to the main computation running
on the CPU.

B.2.5 Extensibility

Extensibility refers to the capacity of an operating system to keep up with
advances in computing technology. To facilitate change over time, the devel-
opers implementedWindows using a layered architecture. TheWindows exec-
utive runs in kernel mode and provides the basic system services and abstrac-
tions that support shared use of the system. On top of the executive, several
server subsystems operate in usermode. Among them are environmental sub-
systems that emulate different operating systems. Thus, programs written for
the Win32 APIs and POSIX all run onWindows in the appropriate environment.
Because of the modular structure, additional environmental subsystems can
be added without affecting the executive. In addition, Windows uses loadable
drivers in the I/O system, so new file systems, new kinds of I/O devices, and
new kinds of networking can be added while the system is running. Windows
uses a client–server model like the Mach operating system and supports dis-
tributed processing by remote procedure calls (RPCs) as defined by the Open
Software Foundation.

B.2.6 Portability

An operating system is portable if it can be moved from one CPU architec-
ture to another with few changes. Windows was designed to be portable. Like
the UNIX operating system, Windows is written primarily in C and C++. The
architecture-specific source code is relatively small, and there is very little
use of assembly code. Porting Windows to a new architecture mostly affects
the Windows kernel, since the user-mode code in Windows is almost exclu-
sively written to be architecture independent. To port Windows, the kernel’s
architecture-specific code must be ported, and sometimes conditional compi-
lation is needed in other parts of the kernel because of changes in major data
structures, such as the page-table format. The entire Windows system must
then be recompiled for the new CPU instruction set.

Operating systems are sensitive not only to CPU architecture but also to
CPU support chips and hardware boot programs. The CPU and support chips
are collectively known as a chipset. These chipsets and the associated boot code
determine how interrupts are delivered, describe the physical characteristics of
each system, and provide interfaces to deeper aspects of the CPU architecture,
such as error recovery and power management. It would be burdensome to
have to port Windows to each type of support chip as well as to each CPU
architecture. Instead, Windows isolates most of the chipset-dependent code in
a dynamic link library (DLL), called the hardware-abstraction layer (HAL), that
is loaded with the kernel. The Windows kernel depends on the HAL interfaces
rather than on the underlying chipset details. This allows the single set of
kernel anddriver binaries for a particular CPU to be usedwith different chipsets
simply by loading a different version of the HAL.

Over the years, Windows has been ported to a number of different CPU
architectures: Intel IA-32-compatible 32-bit CPUs, AMD64-compatible and IA64
64-bit CPUs, the DEC Alpha, and the MIPS and PowerPC CPUs. Most of these
CPU architectures failed in the market. When Windows 7 shipped, only the IA-

B.2 Design Principles 9

32 and AMD64 architectures were supported on client computers, along with
AMD64 and IA64 on servers.

B.2.7 International Support

Windows was designed for international and multinational use. It provides
support for different locales via the national-language-support (NLS) API.
The NLS API provides specialized routines to format dates, time, and money
in accordance with national customs. String comparisons are specialized to
account for varying character sets. UNICODE is Windows’s native character
code. Windows supports ANSI characters by converting them to UNICODE
characters before manipulating them (8-bit to 16-bit conversion). System text
strings are kept in resource files that can be replaced to localize the system
for different languages. Multiple locales can be used concurrently, which is
important to multilingual individuals and businesses.

B.2.8 Energy Efficiency

Increasing energy efficiency for computers causes batteries to last longer for
laptops and netbooks, saves significant operating costs for power and cooling
of data centers, and contributes to green initiatives aimed at lowering energy
consumption by businesses and consumers. For some time, Windows has
implemented several strategies for decreasing energy use. The CPUs aremoved
to lower power states—for example, by lowering clock frequency—whenever
possible. In addition, when a computer is not being actively used, Windows
may put the entire computer into a low-power state (sleep) or may even save
all of memory to disk and shut the computer off (hibernation). When the user
returns, the computer powers up and continues from its previous state, so the
user does not need to reboot and restart applications.

Windows 7 added some new strategies for saving energy. The longer a CPU
can stay unused, themore energy can be saved. Because computers are somuch
faster than human beings, a lot of energy can be saved just while humans are
thinking. The problem is that too many programs are constantly polling to
see what is happening in the system. A swarm of software timers are firing,
keeping the CPU from staying idle long enough to savemuch energy.Windows
7 extends CPU idle time by skipping clock ticks, coalescing software timers into
smaller numbers of events, and “parking” entire CPUs when systems are not
heavily loaded.

B.2.9 Dynamic Device Support

Early in the history of the PC industry, computer configurations were fairly
static. Occasionally, new devices might be plugged into the serial, printer, or
game ports on the back of a computer, but that was it. The next steps toward
dynamic configuration of PCs were laptop docks and PCMIA cards. A PC could
suddenly be connected to or disconnected from a whole set of peripherals. In
a contemporary PC, the situation has completely changed. PCs are designed to
let users to plug and unplug a huge host of peripherals all the time; external
disks, thumb drives, cameras, and the like are constantly coming and going.

Support for dynamic configuration of devices is continually evolving in
Windows. The system can automatically recognize devices when they are

10 Appendix B Windows 7

OS/2
applications

OS/2
subsystem

Win16
applications

MS-DOS
applications

Win18
VDM

window
manager

user mode

file system

I/O manager

MS-DOS
VDM

Win32
subsystem

POSIX
subsystem

logon
process

security
subsystem

authentication
package

security account
manager database

Win32
applications

POSIX
applications

graphic
device
drivers

kernel

executive

hardware abstraction layer

hardware

cache
manager

device
drivers

network
drivers

object
manager

security
reference
monitor

process
manager

plug and
play

manager

virtual
memory
manager

local
procedure

call
facility

Figure B.1 Windows block diagram.

plugged in and can find, install, and load the appropriate drivers—oftenwith-
out user intervention. When devices are unplugged, the drivers automatically
unload, and system execution continues without disrupting other software.

B.3 System Components

The architecture of Windows is a layered system of modules, as shown in Fig-
ure B.1. The main layers are the HAL, the kernel, and the executive, all of which
run in kernelmode, and a collection of subsystems and services that run in user
mode. The user-mode subsystems fall into two categories: the environmental
subsystems, which emulate different operating systems, and the protection
subsystems, which provide security functions. One of the chief advantages of
this type of architecture is that interactions between modules are kept simple.
The remainder of this section describes these layers and subsystems.

B.3.1 Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware chipset differences
from upper levels of the operating system. The HAL exports a virtual hard-
ware interface that is used by the kernel dispatcher, the executive, and the
device drivers. Only a single version of each device driver is required for

B.3 System Components 11

each CPU architecture, no matter what support chips might be present. Device
drivers map devices and access them directly, but the chipset-specific details
of mapping memory, configuring I/O buses, setting up DMA, and coping with
motherboard-specific facilities are all provided by the HAL interfaces.

B.3.2 Kernel

The kernel layer ofWindows has fourmain responsibilities: thread scheduling,
low-level processor synchronization, interrupt and exception handling, and
switching between user mode and kernel mode. The kernel is implemented
in the C language, using assembly language only where absolutely necessary
to interface with the lowest level of the hardware architecture.

The kernel is organized according to object-oriented design principles. An
object type inWindows is a system-defineddata type that has a set of attributes
(data values) and a set of methods (for example, functions or operations). An
object is an instance of an object type. The kernel performs its job by using a
set of kernel objects whose attributes store the kernel data and whose methods
perform the kernel activities.

B.3.2.1 Kernel Dispatcher

The kernel dispatcher provides the foundation for the executive and the sub-
systems. Most of the dispatcher is never paged out of memory, and its execu-
tion is never preempted. Its main responsibilities are thread scheduling and
context switching, implementation of synchronization primitives, timer man-
agement, software interrupts (asynchronous and deferred procedure calls),
and exception dispatching.

B.3.2.2 Threads and Scheduling

Like many other modern operating systems, Windows uses processes and
threads for executable code. Each process has one or more threads, and each
threadhas its own scheduling state, including actual priority, processor affinity,
and CPU usage information.

There are six possible thread states: ready, standby, running, waiting,
transition, and terminated. Ready indicates that the thread is waiting to
run. The highest-priority ready thread is moved to the standby state, which
means it is the next thread to run. In a multiprocessor system, each processor
keeps one thread in a standby state. A thread is running when it is executing
on a processor. It runs until it is preempted by a higher-priority thread, until
it terminates, until its allotted execution time (quantum) ends, or until it waits
on a dispatcher object, such as an event signaling I/O completion. A thread is
in the waiting state when it is waiting for a dispatcher object to be signaled.
A thread is in the transition state while it waits for resources necessary for
execution; for example, it may be waiting for its kernel stack to be swapped in
from disk. A thread enters the terminated state when it finishes execution.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: variable class and real-
time class. The variable class contains threads having priorities from 1 to 15,
and the real-time class contains threads with priorities ranging from 16 to 31.

12 Appendix B Windows 7

The dispatcher uses a queue for each scheduling priority and traverses the set
of queues from highest to lowest until it finds a thread that is ready to run. If a
thread has a particular processor affinity but that processor is not available, the
dispatcher skips past it and continues looking for a ready thread that is willing
to run on the available processor. If no ready thread is found, the dispatcher
executes a special thread called the idle thread. Priority class 0 is reserved for
the idle thread.

When a thread’s time quantum runs out, the clock interrupt queues a
quantum-end deferred procedure call (DPC) to the processor. Queuing the
DPC results in a software interrupt when the processor returns to normal
interrupt priority. The software interrupt causes the dispatcher to reschedule
the processor to execute the next available thread at the preempted thread’s
priority level.

The priority of the preempted thread may be modified before it is placed
back on the dispatcher queues. If the preempted thread is in the variable-
priority class, its priority is lowered. The priority is never lowered below the
base priority. Lowering the thread’s priority tends to limit the CPU consump-
tion of compute-bound threads versus I/O-bound threads. When a variable-
priority thread is released from a wait operation, the dispatcher boosts the
priority. The amount of the boost depends on the device for which the thread
was waiting. For example, a thread waiting for keyboard I/O would get a large
priority increase, whereas a thread waiting for a disk operation would get a
moderate one. This strategy tends to give good response times to interactive
threads using amouse andwindows. It also enables I/O-bound threads to keep
the I/O devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. In addition, the thread associatedwith the user’s
active GUI window receives a priority boost to enhance its response time.

Scheduling occurs when a thread enters the ready or wait state, when a
thread terminates, or when an application changes a thread’s priority or pro-
cessor affinity. If a higher-priority thread becomes readywhile a lower-priority
thread is running, the lower-priority thread is preempted. This preemption
gives the higher-priority thread preferential access to the CPU. Windows is not
a hard real-time operating system, however, because it does not guarantee that
a real-time thread will start to execute within a particular time limit; threads
are blocked indefinitely while DPCs and interrupt service routines (ISRs) are
running (as discussed further below).

Traditionally, operating-system schedulers used sampling to measure CPU
utilization by threads. The system timer would fire periodically, and the timer
interrupt handler would take note of what threadwas currently scheduled and
whether it was executing in user or kernel mode when the interrupt occurred.
This sampling technique was necessary because either the CPU did not have
a high-resolution clock or the clock was too expensive or unreliable to access
frequently. Although efficient, sampling was inaccurate and led to anomalies
such as incorporating interrupt servicing time as thread time and dispatching
threads that had run for only a fraction of the quantum. StartingwithWindows
Vista, CPU time in Windows has been tracked using the hardware timestamp
counter (TSC) included in recent processors. Using the TSC results in more
accurate accounting of CPU usage, and the scheduler will not preempt threads
before they have run for a full quantum.

B.3 System Components 13

B.3.2.3 Implementation of Synchronization Primitives

Key operating-system data structures are managed as objects using common
facilities for allocation, reference counting, and security. Dispatcher objects
control dispatching and synchronization in the system. Examples of these
objects include the following:

• The event object is used to record an event occurrence and to synchronize
this occurrence with some action. Notification events signal all waiting
threads, and synchronization events signal a single waiting thread.

• Themutant provides kernel-mode or user-mode mutual exclusion associ-
ated with the notion of ownership.

• Themutex, available only in kernel mode, provides deadlock-free mutual
exclusion.

• The semaphore object acts as a counter or gate to control the number of
threads that access a resource.

• The thread object is the entity that is scheduled by the kernel dispatcher.
It is associated with a process object, which encapsulates a virtual address
space. The thread object is signaled when the thread exits, and the process
object, when the process exits.

• The timer object is used to keep track of time and to signal timeouts when
operations take too long and need to be interrupted or when a periodic
activity needs to be scheduled.

Many of the dispatcher objects are accessed from user mode via an open
operation that returns a handle. The user-mode code polls or waits on handles
to synchronize with other threads as well as with the operating system (see
Section B.7.1).

B.3.2.4 Software Interrupts: Asynchronous and Deferred Procedure Calls

The dispatcher implements two types of software interrupts: asynchronous
procedure calls (APCs) and deferred procedure calls (DPCs, mentioned earlier).
An asynchronous procedure call breaks into an executing thread and calls
a procedure. APCs are used to begin execution of new threads, suspend or
resume existing threads, terminate threads or processes, deliver notification
that an asynchronous I/O has completed, and extract the contents of the CPU
registers from a running thread. APCs are queued to specific threads and allow
the system to execute both system and user code within a process’s context.
User-mode execution of an APC cannot occur at arbitrary times, but only when
the thread is waiting in the kernel and marked alertable.

DPCsare used to postpone interrupt processing. After handling all urgent
device-interrupt processing, the ISR schedules the remaining processing by
queuing a DPC. The associated software interruptwill not occur until the CPU is
next at a priority lower than the priority of all I/O device interrupts but higher
than the priority at which threads run. Thus, DPCs do not block other device
ISRs. In addition to deferring device-interrupt processing, the dispatcher uses

14 Appendix B Windows 7

DPCs to process timer expirations and to preempt thread execution at the end
of the scheduling quantum.

Execution of DPCs prevents threads from being scheduled on the current
processor and also keeps APCs from signaling the completion of I/O. This is
done so that completion of DPC routines does not take an extended amount
of time. As an alternative, the dispatcher maintains a pool of worker threads.
ISRs and DPCs may queue work items to the worker threads where they will be
executed using normal thread scheduling. DPC routines are restricted so that
they cannot take page faults (be paged out of memory), call system services,
or take any other action that might result in an attempt to wait for a dispatcher
object to be signaled. Unlike APCs, DPC routines make no assumptions about
what process context the processor is executing.

B.3.2.5 Exceptions and Interrupts

The kernel dispatcher also provides trap handling for exceptions and
interrupts generated by hardware or software. Windows defines several
architecture-independent exceptions, including:

• Memory-access violation

• Integer overflow

• Floating-point overflow or underflow

• Integer divide by zero

• Floating-point divide by zero

• Illegal instruction

• Data misalignment

• Privileged instruction

• Page-read error

• Access violation

• Paging file quota exceeded

• Debugger breakpoint

• Debugger single step

The trap handlers deal with simple exceptions. Elaborate exception handling
is performed by the kernel’s exception dispatcher. The exception dispatcher
creates an exception record containing the reason for the exception and finds
an exception handler to deal with it.

When an exception occurs in kernelmode, the exception dispatcher simply
calls a routine to locate the exception handler. If no handler is found, a fatal
system error occurs, and the user is left with the infamous “blue screen of
death” that signifies system failure.

Exception handling is more complex for user-mode processes, because
an environmental subsystem (such as the POSIX system) sets up a debugger
port and an exception port for every process it creates. (For details on ports,

B.3 System Components 15

see Section B.3.3.4.) If a debugger port is registered, the exception handler
sends the exception to the port. If the debugger port is not found or does not
handle that exception, the dispatcher attempts to find an appropriate exception
handler. If no handler is found, the debugger is called again to catch the error
for debugging. If no debugger is running, a message is sent to the process’s
exception port to give the environmental subsystem a chance to translate the
exception. For example, the POSIX environment translates Windows exception
messages into POSIX signals before sending them to the thread that caused
the exception. Finally, if nothing else works, the kernel simply terminates the
process containing the thread that caused the exception.

WhenWindows fails to handle an exception, it may construct a description
of the error that occurred and request permission from the user to send the
information back to Microsoft for further analysis. In some cases, Microsoft’s
automated analysis may be able to recognize the error immediately and sug-
gest a fix or workaround.

The interrupt dispatcher in the kernel handles interrupts by calling either
an interrupt service routine (ISR) supplied by a device driver or a kernel trap-
handler routine. The interrupt is represented by an interrupt object that con-
tains all the information needed to handle the interrupt. Using an interrupt
object makes it easy to associate interrupt-service routines with an interrupt
without having to access the interrupt hardware directly.

Different processor architectures have different types and numbers of inter-
rupts. For portability, the interrupt dispatcher maps the hardware interrupts
into a standard set. The interrupts are prioritized and are serviced in prior-
ity order. There are 32 interrupt request levels (IRQLs) in Windows. Eight are
reserved for use by the kernel; the remaining 24 represent hardware interrupts
via theHAL(althoughmost IA-32 systemsuse only 16). TheWindows interrupts
are defined in Figure B.2.

The kernel uses an interrupt-dispatch table to bind each interrupt level
to a service routine. In a multiprocessor computer, Windows keeps a separate
interrupt-dispatch table (IDT) for each processor, and each processor’s IRQL can
be set independently to mask out interrupts. All interrupts that occur at a level
equal to or less than the IRQLof a processor are blocked until the IRQL is lowered

interrupt levels types of interrupts

31

30

29

machine check or bus error

power fail

clock (used to keep track of time)

profile

traditional PC IRQ hardware interrupts

dispatch and deferred procedure call (DPC) (kernel)

asynchronous procedure call (APC)

passive

28

27

3–26

2

1

0

interprocessor notification (request another processor
to act; e.g., dispatch a process or update the TLB)

Figure B.2 Windows interrupt-request levels.

16 Appendix B Windows 7

by a kernel-level thread or by an ISR returning from interrupt processing.
Windows takes advantage of this property and uses software interrupts to
deliver APCs and DPCs, to perform system functions such as synchronizing
threads with I/O completion, to start thread execution, and to handle timers.

B.3.2.6 Switching between User-Mode and Kernel-Mode Threads

What the programmer thinks of as a thread in traditional Windows is actually
two threads: a user-mode thread (UT) and a kernel-mode thread (KT). Each
has its own stack, register values, and execution context. A UT requests a
system service by executing an instruction that causes a trap to kernel mode.
The kernel layer runs a trap handler that switches between the UT and the
corresponding KT. When a KT has completed its kernel execution and is ready
to switch back to the corresponding UT, the kernel layer is called to make the
switch to the UT, which continues its execution in user mode.

Windows 7 modifies the behavior of the kernel layer to support user-
mode scheduling of the UTs. User-mode schedulers in Windows 7 support
cooperative scheduling. A UT can explicitly yield to another UT by calling
the user-mode scheduler; it is not necessary to enter the kernel. User-mode
scheduling is explained in more detail in Section B.7.3.7.

B.3.3 Executive

The Windows executive provides a set of services that all environmental sub-
systems use. The services are grouped as follows: object manager, virtual
memory manager, process manager, advanced local procedure call facility, I/O
manager, cachemanager, security referencemonitor, plug-and-play and power
managers, registry, and booting.

B.3.3.1 Object Manager

For managing kernel-mode entities, Windows uses a generic set of interfaces
that are manipulated by user-mode programs. Windows calls these entities
objects, and the executive component that manipulates them is the object
manager. Examples of objects are semaphores, mutexes, events, processes,
and threads; all these are dispatcher objects. Threads can block in the ker-
nel dispatcher waiting for any of these objects to be signaled. The process,
thread, and virtual memory APIs use process and thread handles to identify
the process or thread to be operated on. Other examples of objects include
files, sections, ports, and various internal I/O objects. File objects are used to
maintain the open state of files and devices. Sections are used to map files.
Local-communication endpoints are implemented as port objects.

User-mode code accesses these objects using an opaque value called a
handle, which is returned by many APIs. Each process has a handle table
containing entries that track the objects used by the process. The system pro-
cess, which contains the kernel, has its own handle table, which is protected
from user code. The handle tables in Windows are represented by a tree struc-
ture, which can expand from holding 1,024 handles to holding over 16 million.
Kernel-mode code can access an object by using either a handle or a referenced
pointer.

B.3 System Components 17

Aprocess gets a handle by creating an object, by opening an existing object,
by receiving a duplicated handle from another process, or by inheriting a
handle from the parent process. When a process exits, all its open handles are
implicitly closed. Since the object manager is the only entity that generates
object handles, it is the natural place to check security. The object manager
checks whether a process has the right to access an object when the process
tries to open the object. The object manager also enforces quotas, such as the
maximum amount of memory a process may use, by charging a process for the
memory occupied by all its referenced objects and refusing to allocate more
memory when the accumulated charges exceed the process’s quota.

The object manager keeps track of two counts for each object: the number
of handles for the object and the number of referenced pointers. The handle
count is the number of handles that refer to the object in the handle tables
of all processes, including the system process that contains the kernel. The
referenced pointer count is incremented whenever a new pointer is needed
by the kernel and decremented when the kernel is done with the pointer. The
purpose of these reference counts is to ensure that an object is not freed while
it is still referenced by either a handle or an internal kernel pointer.

The object manager maintains the Windows internal name space. In con-
trast to UNIX, which roots the system name space in the file system, Windows
uses an abstract name space and connects the file systems as devices. Whether
a Windows object has a name is up to its creator. Processes and threads are
created without names and referenced either by handle or through a separate
numerical identifier. Synchronization events usually have names, so that they
can be opened by unrelated processes. A name can be either permanent or
temporary. A permanent name represents an entity, such as a disk drive, that
remains even if no process is accessing it. A temporary name exists only while
a process holds a handle to the object. The object manager supports directories
and symbolic links in the name space. As an example, MS-DOS drive letters
are implemented using symbolic links; ∖Global??∖C: is a symbolic link to the
device object ∖Device∖HarddiskVolume2, representing a mounted file-system
volume in the ∖Device directory.

Each object, asmentioned earlier, is an instance of an object type. The object
type specifies how instances are to be allocated, how the data fields are to
be defined, and how the standard set of virtual functions used for all objects
are to be implemented. The standard functions implement operations such as
mapping names to objects, closing and deleting, and applying security checks.
Functions that are specific to a particular type of object are implemented by
system services designed to operate on that particular object type, not by the
methods specified in the object type.

The parse() function is the most interesting of the standard object func-
tions. It allows the implementation of an object. The file systems, the registry
configuration store, and GUI objects are the most notable users of parse func-
tions to extend the Windows name space.

Returning to our Windows naming example, device objects used to rep-
resent file-system volumes provide a parse function. This allows a name like
∖Global??∖C:∖foo∖bar.doc to be interpreted as the file ∖foo∖bar.doc on the
volume represented by the device object HarddiskVolume2. We can illustrate
how naming, parse functions, objects, and handles work together by looking
at the steps to open the file in Windows:

18 Appendix B Windows 7

1. An application requests that a file named C:∖foo∖bar.doc be opened.

2. The object manager finds the device object HarddiskVolume2, looks up
the parse procedure IopParseDevice from the object’s type, and invokes
it with the file’s name relative to the root of the file system.

3. IopParseDevice() allocates a file object and passes it to the file system,
which fills in the details of how to access C:∖foo∖bar.doc on the volume.

4. When the file system returns, IopParseDevice() allocates an entry for
the file object in the handle table for the current process and returns the
handle to the application.

If the file cannot successfully be opened, IopParseDevice() deletes the
file object it allocated and returns an error indication to the application.

B.3.3.2 Virtual Memory Manager

The executive component that manages the virtual address space, physi-
cal memory allocation, and paging is the virtual memory (VM) manager.
The design of the VM manager assumes that the underlying hardware sup-
ports virtual-to-physicalmapping, a pagingmechanism, and transparent cache
coherence on multiprocessor systems, as well as allowing multiple page-table
entries to map to the same physical page frame. The VM manager in Windows
uses a page-based management scheme with page sizes of 4 KB and 2 MB on
AMD64 and IA-32-compatible processors and 8 KB on the IA64. Pages of data
allocated to a process that are not in physical memory are either stored in the
paging files on disk or mapped directly to a regular file on a local or remote
file system. A page can also be marked zero-fill-on-demand, which initializes
the page with zeros before it is allocated, thus erasing the previous contents.

On IA-32 processors, each process has a 4-GB virtual address space. The
upper 2 GB are mostly identical for all processes and are used by Windows in
kernel mode to access the operating-system code and data structures. For the
AMD64 architecture, Windows provides a 8-TB virtual address space for user
mode out of the 16 EB supported by existing hardware for each process.

Key areas of the kernel-mode region that are not identical for all processes
are the self-map, hyperspace, and session space. The hardware references a
process’s page table using physical page-frame numbers, and the page table
self-mapmakes the contents of the process’s page table accessible using virtual
addresses. Hyperspace maps the current process’s working-set information
into the kernel-mode address space. Session space is used to share an instance
of the Win32 and other session-specific drivers among all the processes in
the same terminal-server (TS) session. Different TS sessions share different
instances of these drivers, yet they are mapped at the same virtual addresses.
The lower, user-mode region of virtual address space is specific to each process
and accessible by both user- and kernel-mode threads.

The Windows VM manager uses a two-step process to allocate virtual
memory. The first step reserves one or more pages of virtual addresses in the
process’s virtual address space. The second step commits the allocation by
assigning virtualmemory space (physicalmemory or space in the paging files).
Windows limits the amount of virtual memory space a process consumes by
enforcing a quota on committedmemory. Aprocess decommits memory that it

B.3 System Components 19

is no longer using to free up virtual memory space for use by other processes.
The APIs used to reserve virtual addresses and commit virtual memory take a
handle on a process object as a parameter. This allows one process to control the
virtual memory of another. Environmental subsystemsmanage the memory of
their client processes in this way.

Windows implements shared memory by defining a section object. After
getting a handle to a section object, a processmaps thememory of the section to
a range of addresses, called a view. A process can establish a view of the entire
section or only the portion it needs. Windows allows sections to be mapped
not just into the current process but into any process for which the caller has a
handle.

Sections can be used in many ways. A section can be backed by disk space
either in the system-paging file or in a regular file (amemory-mapped file). A
section can be based, meaning that it appears at the same virtual address for all
processes attempting to access it. Sections can also represent physical memory,
allowing a 32-bit process to access more physical memory than can fit in its
virtual address space. Finally, the memory protection of pages in the section
can be set to read-only, read-write, read-write-execute, execute-only, no access,
or copy-on-write.

Let’s look more closely at the last two of these protection settings:

• A no-access page raises an exception if accessed. The exception can be
used, for example, to check whether a faulty program iterates beyond
the end of an array or simply to detect that the program attempted to
access virtual addresses that are not committed to memory. User- and
kernel-mode stacks use no-access pages as guard pages to detect stack
overflows. Another use is to look for heap buffer overruns. Both the user-
modememory allocator and the special kernel allocator used by the device
verifier can be configured to map each allocation onto the end of a page,
followed by a no-access page to detect programming errors that access
beyond the end of an allocation.

• The copy-on-write mechanism enables the VM manager to use physical
memorymore efficiently.When two processes want independent copies of
data from the same section object, the VM manager places a single shared
copy into virtualmemory and activates the copy-on-write property for that
region of memory. If one of the processes tries to modify data in a copy-
on-write page, the VM manager makes a private copy of the page for the
process.

The virtual address translation in Windows uses a multilevel page table.
For IA-32 and AMD64 processors, each process has a page directory that con-
tains 512 page-directory entries (PDEs) 8 bytes in size. Each PDE points to a PTE
table that contains 512 page-table entries (PTEs) 8 bytes in size. Each PTE points
to a 4-KBpage frame in physicalmemory. For a variety of reasons, the hardware
requires that the page directories or PTE tables at each level of amultilevel page
table occupy a single page. Thus, the number of PDEs or PTEs that fit in a page
determine how many virtual addresses are translated by that page. See Figure
B.3 for a diagram of this structure.

The structure described so far can be used to represent only 1 GB of virtual
address translation. For IA-32, a second page-directory level is needed, con-

20 Appendix B Windows 7

page table
entry 0

page
table 0

page table
entry 0

4-KB
page

4-KB
page

4-KB
page

4-KB
page

page
table 511

page table
entry 511

page table
entry 511

page
directory
entry 0

page
directory

0

page
directory
entry 0

page
directory

3

page
directory
entry 511

page
directory
entry 511

pointer 0 pointer 1 pointer 2 pointer 3

page directory pointer table

Figure B.3 Page-table layout.

taining only four entries, as shown in the diagram. On 64-bit processors, more
levels are needed. For AMD64, Windows uses a total of four full levels. The
total size of all page-table pages needed to fully represent even a 32-bit virtual
address space for a process is 8 MB. The VM manager allocates pages of PDEs
and PTEs as needed and moves page-table pages to disk when not in use. The
page-table pages are faulted back into memory when referenced.

We next consider how virtual addresses are translated into physical
addresses on IA-32-compatible processors. A 2-bit value can represent the
values 0, 1, 2, 3. A 9-bit value can represent values from 0 to 511; a 12-bit value,
values from 0 to 4,095. Thus, a 12-bit value can select any byte within a 4-KB
page of memory. A 9-bit value can represent any of the 512 PDEs or PTEs in a
page directory or PTE-table page. As shown in Figure B.4, translating a virtual
address pointer to a byte address in physical memory involves breaking the
32-bit pointer into four values, starting from the most significant bits:

• Two bits are used to index into the four PDEs at the top level of the page
table. The selected PDE will contain the physical page number for each of
the four page-directory pages that map 1 GB of the address space.

PTR PTE indexPDE index page offset

31 0

Figure B.4 Virtual-to-physical address translation on IA-32.

B.3 System Components 21

• Nine bits are used to select another PDE, this time from a second-level page
directory. This PDE will contain the physical page numbers of up to 512
PTE-table pages.

• Nine bits are used to select one of 512 PTEs from the selected PTE-table
page. The selected PTE will contain the physical page number for the byte
we are accessing.

• Twelve bits are used as the byte offset into the page. The physical address
of the byte we are accessing is constructed by appending the lowest 12 bits
of the virtual address to the end of the physical page number we found in
the selected PTE.

The number of bits in a physical addressmay be different from the number
of bits in a virtual address. In the original IA-32 architecture, the PTE and PDE
were 32-bit structures that had room for only 20 bits of physical page number,
so the physical address size and the virtual address size were the same. Such
systems could address only 4 GB of physical memory. Later, the IA-32 was
extended to the larger 64-bit PTE size used today, and the hardware supported
24-bit physical addresses. These systems could support 64 GB and were used
on server systems. Today, all Windows servers are based on either the AMD64
or the IA64 and support very, very large physical addresses—more thanwe can
possibly use. (Of course, once upon a time 4 GB seemed optimistically large for
physical memory.)

To improve performance, the VM manager maps the page-directory and
PTE-table pages into the same contiguous region of virtual addresses in every
process. This self-map allows the VMmanager to use the same pointer to access
the current PDE or PTE corresponding to a particular virtual address no matter
what process is running. The self-map for the IA-32 takes a contiguous 8-MB
region of kernel virtual address space; the AMD64 self-map occupies 512 GB.
Although the self-map occupies significant address space, it does not require
any additional virtual memory pages. It also allows the page table’s pages to
be automatically paged in and out of physical memory.

In the creation of a self-map, one of the PDEs in the top-level page directory
refers to the page-directory page itself, forming a “loop” in the page-table
translations. The virtual pages are accessed if the loop is not taken, the PTE-table
pages are accessed if the loop is taken once, the lowest-level page-directory
pages are accessed if the loop is taken twice, and so forth.

The additional levels of page directories used for 64-bit virtual memory are
translated in the same way except that the virtual address pointer is broken up
into even more values. For the AMD64, Windows uses four full levels, each of
which maps 512 pages, or 9+9+9+9+12 = 48 bits of virtual address.

To avoid the overhead of translating every virtual address by looking up
the PDE and PTE, processors use translation look-aside buffer (TLB) hardware,
which contains an associativememory cache formapping virtual pages to PTEs.
The TLB is part of thememory-management unit (MMU) within each processor.
The MMU needs to “walk” (navigate the data structures of) the page table in
memory only when a needed translation is missing from the TLB.

The PDEs and PTEs contain more than just physical page numbers. They
also have bits reserved for operating-system use and bits that control how the
hardware uses memory, such as whether hardware caching should be used for

22 Appendix B Windows 7

each page. In addition, the entries specify what kinds of access are allowed for
both user and kernel modes.

APDE can also be marked to say that it should function as a PTE rather than
a PDE. On a IA-32, the first 11 bits of the virtual address pointer select a PDE in
the first two levels of translation. If the selected PDE is marked to act as a PTE,
then the remaining 21 bits of the pointer are used as the offset of the byte. This
results in a 2-MB size for the page. Mixing and matching 4-KB and 2-MB page
sizeswithin the page table is easy for the operating systemand can significantly
improve the performance of some programs by reducing how often the MMU
needs to reload entries in the TLB, since one PDE mapping 2 MB replaces 512
PTEs each mapping 4 KB.

Managing physical memory so that 2-MB pages are available when needed
is difficult, however, as they may continually be broken up into 4-KB pages,
causing external fragmentation of memory. Also, the large pages can result
in very significant internal fragmentation. Because of these problems, it is
typically only Windows itself, along with large server applications, that use
large pages to improve the performance of the TLB. They are better suited to
do so because operating-system and server applications start running when
the system boots, before memory has become fragmented.

Windows manages physical memory by associating each physical page
with one of seven states: free, zeroed, modified, standby, bad, transition, or
valid.

• A free page is a page that has no particular content.

• A zeroed page is a free page that has been zeroed out and is ready for
immediate use to satisfy zero-on-demand faults.

• Amodified page has beenwritten by a process andmust be sent to the disk
before it is allocated for another process.

• A standby page is a copy of information already stored on disk. Standby
pages may be pages that were not modified, modified pages that have
already been written to the disk, or pages that were prefetched because
they are expected to be used soon.

• A bad page is unusable because a hardware error has been detected.

• A transition page is on its way in from disk to a page frame allocated in
physical memory.

• A valid page is part of the working set of one or more processes and is
contained within these processes’ page tables.

While valid pages are contained in processes’ page tables, pages in other
states are kept in separate lists according to state type. The lists are constructed
by linking the corresponding entries in the page framenumber (PFN) database,
which includes an entry for each physical memory page. The PFN entries also
include information such as reference counts, locks, and NUMA information.
Note that the PFN database represents pages of physical memory, whereas the
PTEs represent pages of virtual memory.

When the valid bit in a PTE is zero, hardware ignores all the other bits,
and the VMmanager can define them for its own use. Invalid pages can have a
number of states represented by bits in the PTE. Page-file pages that have never

B.3 System Components 23

63

V

32

protT P page
file

31 0

page file offset

Figure B.5 Page-file page-table entry. The valid bit is zero.

been faulted in are marked zero-on-demand. Pages mapped through section
objects encode a pointer to the appropriate section object. PTEs for pages that
have beenwritten to the page file contain enough information to locate the page
on disk, and so forth. The structure of the page-file PTE is shown in Figure B.5.
The T, P, and V bits are all zero for this type of PTE. The PTE includes 5 bits for
page protection, 32 bits for page-file offset, and 4 bits to select the paging file.
There are also 20 bits reserved for additional bookkeeping.

Windows uses a per-working-set, least-recently-used (LRU) replacement
policy to take pages from processes as appropriate. When a process is started,
it is assigned a default minimum working-set size. The working set of each
process is allowed to grow until the amount of remaining physical memory
starts to run low, at which point the VM manager starts to track the age of
the pages in each working set. Eventually, when the available memory runs
critically low, the VM manager trims the working set to remove older pages.

How old a page is depends not on how long it has been in memory but on
when it was last referenced. This is determined by periodically making a pass
through the working set of each process and incrementing the age for pages
that have not been marked in the PTE as referenced since the last pass. When it
becomes necessary to trim the working sets, the VMmanager uses heuristics to
decide howmuch to trim from each process and then removes the oldest pages
first.

A process can have its working set trimmed even when plenty of memory
is available, if it was given a hard limit on howmuch physical memory it could
use. In Windows 7, the VM manager will also trim processes that are growing
rapidly, even if memory is plentiful. This policy change significantly improves
the responsiveness of the system for other processes.

Windows tracks working sets not only for user-mode processes but also
for the system process, which includes all the pageable data structures and
code that run in kernel mode. Windows 7 created additional working sets for
the system process and associated them with particular categories of kernel
memory; the file cache, kernel heap, and kernel code now have their own
working sets. The distinct working sets allow the VM manager to use different
policies to trim the different categories of kernel memory.

24 Appendix B Windows 7

The VM manager does not fault in only the page immediately needed.
Research shows that the memory referencing of a thread tends to have a
locality property. That is, when a page is used, it is likely that adjacent pages
will be referenced in the near future. (Think of iterating over an array or
fetching sequential instructions that form the executable code for a thread.)
Because of locality, when the VM manager faults in a page, it also faults in a
few adjacent pages. This prefetching tends to reduce the total number of page
faults and allows reads to be clustered to improve I/O performance.

In addition to managing committed memory, the VM manager manages
each process’s reserved memory, or virtual address space. Each process has an
associated tree that describes the ranges of virtual addresses in use and what
the uses are. This allows the VMmanager to fault in page-table pages as needed.
If the PTE for a faulting address is uninitialized, the VM manager searches for
the address in the process’s tree of virtual address descriptors (VADs) and uses
this information to fill in the PTE and retrieve the page. In some cases, a PTE-
table page itself may not exist; such a pagemust be transparently allocated and
initialized by the VM manager. In other cases, the page may be shared as part
of a section object, and the VADwill contain a pointer to that section object. The
section object contains information on how to find the shared virtual page so
that the PTE can be initialized to point at it directly.

B.3.3.3 Process Manager

The Windows process manager provides services for creating, deleting, and
using processes, threads, and jobs. It has no knowledge about parent–child
relationships or process hierarchies; those refinements are left to the particular
environmental subsystem that owns the process. The process manager is also
not involved in the scheduling of processes, other than setting the priorities and
affinities in processes and threads when they are created. Thread scheduling
takes place in the kernel dispatcher.

Each process contains one or more threads. Processes themselves can be
collected into larger units called job objects. The use of job objects allows
limits to be placed on CPU usage, working-set size, and processor affinities
that control multiple processes at once. Job objects are used to manage large
data-center machines.

An example of process creation in the Win32 environment is as follows:

1. AWin32 application calls CreateProcess().

2. Amessage is sent to the Win32 subsystem to notify it that the process is
being created.

3. CreateProcess() in the original process then calls an API in the process
manager of the NT executive to actually create the process.

4. The process manager calls the object manager to create a process object
and returns the object handle to Win32.

5. Win32 calls the process manager again to create a thread for the process
and returns handles to the new process and thread.

The Windows APIs for manipulating virtual memory and threads and
for duplicating handles take a process handle, so subsystems can perform

B.3 System Components 25

operations on behalf of a new process without having to execute directly in
the new process’s context. Once a new process is created, the initial thread
is created, and an asynchronous procedure call is delivered to the thread
to prompt the start of execution at the user-mode image loader. The loader
is in ntdll.dll, which is a link library automatically mapped into every
newly created process. Windows also supports a UNIX fork() style of process
creation in order to support the POSIX environmental subsystem. Although the
Win32 environment calls the process manager directly from the client process,
POSIX uses the cross-process nature of the Windows APIs to create the new
process from within the subsystem process.

The process manager relies on the asynchronous procedure calls (APCs)
implemented by the kernel layer. APCs are used to initiate thread execution,
suspend and resume threads, access thread registers, terminate threads and
processes, and support debuggers.

The debugger support in the processmanager includes the APIs to suspend
and resume threads and to create threads that begin in suspendedmode. There
are also process-manager APIs that get and set a thread’s register context and
access another process’s virtual memory. Threads can be created in the current
process; they can also be injected into another process. The debugger makes
use of thread injection to execute code within a process being debugged.

While running in the executive, a thread can temporarily attach to a dif-
ferent process. Thread attach is used by kernel worker threads that need to
execute in the context of the process originating a work request. For example,
the VM manager might use thread attach when it needs access to a process’s
working set or page tables, and the I/O manager might use it in updating the
status variable in a process for asynchronous I/O operations.

The process manager also supports impersonation. Each thread has an
associated security token. When the login process authenticates a user, the
security token is attached to the user’s process and inherited by its child pro-
cesses. The token contains the security identity (SID) of the user, the SIDs of the
groups the user belongs to, the privileges the user has, and the integrity level
of the process. By default, all threads within a process share a common token,
representing the user and the application that started the process. However, a
thread running in a process with a security token belonging to one user can set
a thread-specific token belonging to another user to impersonate that user.

The impersonation facility is fundamental to the client–server RPC model,
where services must act on behalf of a variety of clients with different security
IDs. The right to impersonate a user is most often delivered as part of an RPC
connection from a client process to a server process. Impersonation allows the
server to access system services as if itwere the client in order to access or create
objects and files on behalf of the client. The server process must be trustworthy
andmust be carefullywritten to be robust against attacks. Otherwise, one client
could take over a server process and then impersonate any user who made a
subsequent client request.

B.3.3.4 Facilities for Client–Server Computing

The implementation of Windows uses a client–server model throughout. The
environmental subsystems are servers that implement particular operating-
system personalities. Many other services, such as user authentication, net-

26 Appendix B Windows 7

work facilities, printer spooling, web services, network file systems, and plug-
and-play, are also implemented using this model. To reduce the memory foot-
print, multiple services are often collected into a few processes running the
svchost.exe program. Each service is loaded as a dynamic-link library (DLL),
which implements the service by relying on the user-mode thread-pool facili-
ties to share threads and wait for messages (see Section B.3.3.3).

The normal implementation paradigm for client–server computing is to
use RPCs to communicate requests. TheWin32API supports a standard RPC pro-
tocol, as described in Section B.6.2.7. RPC usesmultiple transports (for example,
namedpipes and TCP/IP) and can be used to implement RPCs between systems.
When an RPC always occurs between a client and server on the local system,
the advanced local procedure call facility (ALPC) can be used as the transport.
At the lowest level of the system, in the implementation of the environmental
systems, and for services that must be available in the early stages of booting,
RPC is not available. Instead, native Windows services use ALPC directly.

ALPC is a message-passing mechanism. The server process publishes a
globally visible connection-port object. When a client wants services from a
subsystem or service, it opens a handle to the server’s connection-port object
and sends a connection request to the port. The server creates a channel and
returns a handle to the client. The channel consists of a pair of private com-
munication ports: one for client-to-server messages and the other for server-
to-client messages. Communication channels support a callback mechanism,
so the client and server can accept requests when they would normally be
expecting a reply.

When an ALPC channel is created, one of threemessage-passing techniques
is chosen.

1. The first technique is suitable for small tomediummessages (up to 63 KB).
In this case, the port’s message queue is used as intermediate storage, and
the messages are copied from one process to the other.

2. The second technique is for larger messages. In this case, a shared-
memory section object is created for the channel. Messages sent through
the port’s message queue contain a pointer and size information referring
to the section object. This avoids the need to copy large messages. The
sender places data into the shared section, and the receiver views them
directly.

3. The third technique uses APIs that read and write directly into a process’s
address space. ALPC provides functions and synchronization so that a
server can access the data in a client. This technique is normally used
by RPC to achieve higher performance for specific scenarios.

The Win32 windowmanager uses its own form of message passing, which
is independent of the executive ALPC facilities.When a client asks for a connec-
tion that uses window-manager messaging, the server sets up three objects: (1)
a dedicated server thread to handle requests, (2) a 64-KB shared section object,
and (3) an event-pair object. An event-pair object is a synchronization object
used by theWin32 subsystem to provide notificationwhen the client thread has
copied a message to the Win32 server, or vice versa. The section object is used
to pass the messages, and the event-pair object provides synchronization.

B.3 System Components 27

Window-manager messaging has several advantages:

• The section object eliminates message copying, since it represents a region
of shared memory.

• The event-pair object eliminates the overhead of using the port object to
pass messages containing pointers and lengths.

• The dedicated server thread eliminates the overhead of determiningwhich
client thread is calling the server, since there is one server thread per client
thread.

• The kernel gives scheduling preference to these dedicated server threads
to improve performance.

B.3.3.5 I/O Manager

The I/O manager is responsible for managing file systems, device drivers, and
network drivers. It keeps track of which device drivers, filter drivers, and file
systems are loaded, and it also manages buffers for I/O requests. It works
with the VM manager to provide memory-mapped file I/O and controls the
Windows cache manager, which handles caching for the entire I/O system. The
I/O manager is fundamentally asynchronous, providing synchronous I/O by
explicitly waiting for an I/O operation to complete. The I/O manager provides
several models of asynchronous I/O completion, including setting of events,
updating of a status variable in the calling process, deliveryof APCs to initiating
threads, and use of I/O completion ports,which allow a single thread to process
I/O completions from many other threads.

Device drivers are arranged in a list for each device (called a driver or
I/O stack). A driver is represented in the system as a driver object. Because
a single driver can operate on multiple devices, the drivers are represented in
the I/O stack by a device object, which contains a link to the driver object.
The I/O manager converts the requests it receives into a standard form called
an I/O request packet (IRP). It then forwards the IRP to the first driver in the
targeted I/O stack for processing. After a driver processes the IRP, it calls the
I/O manager either to forward the IRP to the next driver in the stack or, if all
processing is finished, to complete the operation represented by the IRP.

The I/O request may be completed in a context different from the one in
which it was made. For example, if a driver is performing its part of an I/O
operation and is forced to block for an extended time, it may queue the IRP to
a worker thread to continue processing in the system context. In the original
thread, the driver returns a status indicating that the I/O request is pending
so that the thread can continue executing in parallel with the I/O operation.
An IRP may also be processed in interrupt-service routines and completed in
an arbitrary process context. Because some final processing may need to take
place in the context that initiated the I/O, the I/O manager uses an APC to do
final I/O-completion processing in the process context of the originating thread.

The I/O stack model is very flexible. As a driver stack is built, vari-
ous drivers have the opportunity to insert themselves into the stack as filter
drivers. Filter drivers can examine and potentially modify each I/O operation.
Mount management, partition management, and disk striping and mirroring
are all examples of functionality implemented using filter drivers that execute

28 Appendix B Windows 7

beneath the file system in the stack. File-system filter drivers execute above
the file system and have been used to implement functionalities such as hier-
archical storage management, single instancing of files for remote boot, and
dynamic format conversion. Third parties also use file-system filter drivers to
implement virus detection.

Device drivers for Windows are written to the Windows Driver Model
(WDM) specification. This model lays out all the requirements for device
drivers, including how to layer filter drivers, share common code for han-
dling power and plug-and-play requests, build correct cancellation logic, and
so forth.

Because of the richness of the WDM, writing a full WDM device driver
for each new hardware device can involve a great deal of work. Fortunately,
the port/miniport model makes it unnecessary to do this. Within a class of
similar devices, such as audio drivers, SATA devices, or Ethernet controllers,
each instance of a device shares a common driver for that class, called a port
driver. The port driver implements the standard operations for the class and
then calls device-specific routines in the device’s miniport driver to imple-
ment device-specific functionality. The TCP/IP network stack is implemented
in this way, with the ndis.sys class driver implementingmuch of the network
driver functionality and calling out to the networkminiport drivers for specific
hardware.

Recent versions of Windows, including Windows 7, provide additional
simplifications for writing device drivers for hardware devices. Kernel-mode
drivers can now be written using the Kernel-Mode Driver Framework
(KMDF), which provides a simplified programming model for drivers on top
of WDM. Another option is the User-Mode Driver Framework (UMDF). Many
drivers do not need to operate in kernel mode, and it is easier to develop and
deploy drivers in user mode. It also makes the system more reliable, because
a failure in a user-mode driver does not cause a kernel-mode crash.

B.3.3.6 Cache Manager

In many operating systems, caching is done by the file system. Instead, Win-
dows provides a centralized caching facility. The cache managerworks closely
with the VM manager to provide cache services for all components under the
control of the I/O manager. Caching in Windows is based on files rather than
raw blocks. The size of the cache changes dynamically according to howmuch
free memory is available in the system. The cache manager maintains a pri-
vate working set rather than sharing the system process’s working set. The
cache manager memory-maps files into kernel memory and then uses special
interfaces to the VMmanager to fault pages into or trim them from this private
working set.

The cache is divided into blocks of 256 KB. Each cache block can hold a view
(that is, a memory-mapped region) of a file. Each cache block is described by
a virtual address control block (VACB) that stores the virtual address and file
offset for the view, aswell as the number of processes using the view. The VACBs
reside in a single array maintained by the cache manager.

When the I/O manager receives a file’s user-level read request, the I/O
manager sends an IRP to the I/O stack for the volume on which the file resides.
For files that are marked as cacheable, the file system calls the cache manager

B.3 System Components 29

cache manager

VM manager

process

file system

disk driver

noncached I/O

I/O manager

data copy

cached I/O

page fault

I/O

Figure B.6 File I/O.

to look up the requested data in its cached file views. The cache manager
calculates which entry of that file’s VACB index array corresponds to the byte
offset of the request. The entry either points to the view in the cache or is
invalid. If it is invalid, the cache manager allocates a cache block (and the
corresponding entry in the VACB array) andmaps the view into the cache block.
The cache manager then attempts to copy data from the mapped file to the
caller’s buffer. If the copy succeeds, the operation is completed.

If the copy fails, it does so because of a page fault, which causes the
VM manager to send a noncached read request to the I/O manager. The I/O
manager sends another request down the driver stack, this time requesting
a paging operation, which bypasses the cache manager and reads the data
from the file directly into the page allocated for the cache manager. Upon
completion, the VACB is set to point at the page. The data, now in the cache, are
copied to the caller’s buffer, and the original I/O request is completed. Figure
B.6 shows an overview of these operations.

Akernel-level read operation is similar, except that the data can be accessed
directly from the cache rather than being copied to a buffer in user space.
To use file-system metadata (data structures that describe the file system),
the kernel uses the cache manager’s mapping interface to read the metadata.
To modify the metadata, the file system uses the cache manager’s pinning
interface. Pinning a page locks the page into a physical-memory page frame so
that the VM manager cannot move the page or page it out. After updating the
metadata, the file system asks the cachemanager to unpin the page. Amodified
page is marked dirty, and so the VM manager flushes the page to disk.

To improve performance, the cache manager keeps a small history of read
requests and from this history attempts to predict future requests. If the cache
manager finds a pattern in the previous three requests, such as sequential
access forward or backward, it prefetches data into the cache before the next
request is submitted by the application. In this way, the application may find
its data already cached and not need to wait for disk I/O.

The cache manager is also responsible for telling the VM manager to flush
the contents of the cache. The cache manager’s default behavior is write-back

30 Appendix B Windows 7

caching: it accumulates writes for 4 to 5 seconds and then wakes up the cache-
writer thread. When write-through caching is needed, a process can set a flag
when opening the file, or the process can call an explicit cache-flush function.

A fast-writing process could potentially fill all the free cache pages before
the cache-writer thread had a chance to wake up and flush the pages to disk.
The cache writer prevents a process from flooding the system in the following
way. When the amount of free cache memory becomes low, the cache manager
temporarily blocks processes attempting to write data and wakes the cache-
writer thread to flush pages to disk. If the fast-writing process is actually a
network redirector for a network file system, blocking it for too long could
cause network transfers to time out and be retransmitted. This retransmission
would waste network bandwidth. To prevent such waste, network redirectors
can instruct the cache manager to limit the backlog of writes in the cache.

Because a network file system needs to move data between a disk and the
network interface, the cache manager also provides a DMA interface to move
the data directly. Moving data directly avoids the need to copy data through
an intermediate buffer.

B.3.3.7 Security Reference Monitor

Centralizing management of system entities in the object manager enables
Windows to use a uniform mechanism to perform run-time access validation
and audit checks for every user-accessible entity in the system. Whenever a
process opens a handle to an object, the security reference monitor (SRM)
checks the process’s security token and the object’s access-control list to see
whether the process has the necessary access rights.

The SRM is also responsible for manipulating the privileges in security
tokens. Special privileges are required for users to perform backup or restore
operations on file systems, debug processes, and so forth. Tokens can also be
marked as being restricted in their privileges so that they cannot access objects
that are available to most users. Restricted tokens are used primarily to limit
the damage that can be done by execution of untrusted code.

The integrity level of the code executing in a process is also representedby a
token. Integrity levels are a type of capabilitymechanism, asmentioned earlier.
Aprocess cannotmodify an object with an integrity level higher than that of the
code executing in the process, whatever other permissions have been granted.
Integrity levels were introduced to make it harder for code that successfully
attacks outward-facing software, like Internet Explorer, to take over a system.

Another responsibility of the SRM is logging security audit events. The
Department of Defense’s Common Criteria (the 2005 successor to the Orange
Book) requires that a secure system have the ability to detect and log all
attempts to access system resources so that it can more easily trace attempts at
unauthorized access. Because the SRM is responsible for making access checks,
it generates most of the audit records in the security-event log.

B.3.3.8 Plug-and-Play Manager

The operating system uses the plug-and-play (PnP) manager to recognize and
adapt to changes in the hardware configuration. PnP devices use standard
protocols to identify themselves to the system. The PnPmanager automatically
recognizes installed devices and detects changes in devices as the system

B.3 System Components 31

operates. Themanager also keeps track of hardware resources used by a device,
as well as potential resources that could be used, and takes care of loading
the appropriate drivers. This management of hardware resources—primarily
interrupts and I/O memory ranges—has the goal of determining a hardware
configuration in which all devices are able to operate successfully.

The PnP manager handles dynamic reconfiguration as follows. First, it
gets a list of devices from each bus driver (for example, PCI or USB). It loads
the installed driver (after finding one, if necessary) and sends an add-device
request to the appropriate driver for each device. The PnPmanager thenfigures
out the optimal resource assignments and sends a start-device request to
each driver specifying the resource assignments for the device. If a device
needs to be reconfigured, the PnPmanager sends a query-stop request, which
asks the driver whether the device can be temporarily disabled. If the driver
can disable the device, then all pending operations are completed, and new
operations are prevented from starting. Finally, the PnPmanager sends a stop
request and can then reconfigure the devicewith a new start-device request.

The PnP manager also supports other requests. For example, query-
remove, which operates similarly to query-stop, is employed when a user
is getting ready to eject a removable device, such as a USB storage device. The
surprise-remove request is used when a device fails or, more likely, when a
user removes a device without telling the system to stop it first. Finally, the
remove request tells the driver to stop using a device permanently.

Many programs in the system are interested in the addition or removal
of devices, so the PnP manager supports notifications. Such a notification, for
example, gives GUI file menus the information they need to update their list
of disk volumes when a new storage device is attached or removed. Installing
devices often results in adding new services to the svchost.exe processes in
the system. These services frequently set themselves up to run whenever the
system boots and continue to run even if the original device is never plugged
into the system. Windows 7 introduced a service-trigger mechanism in the
service control manager (SCM), which manages the system services. With this
mechanism, services can register themselves to start only when SCM receives a
notification from the PnP manager that the device of interest has been added
to the system.

B.3.3.9 Power Manager

Windows works with the hardware to implement sophisticated strategies for
energy efficiency, as described in Section B.2.8. The policies that drive these
strategies are implementedby thepowermanager. The powermanager detects
current system conditions, such as the load on CPUs or I/O devices, and
improves energy efficiency by reducing the performance and responsiveness of
the systemwhenneed is low. The powermanager can also put the entire system
into a very efficient sleepmode and can even write all the contents of memory
to disk and turn off the power to allow the system to go into hibernation.

The primary advantage of sleep is that the system can enter fairly quickly,
perhaps just a few seconds after the lid closes on a laptop. The return from
sleep is also fairly quick. The power is turned down low on the CPUs and I/O
devices, but the memory continues to be powered enough that its contents are
not lost.

32 Appendix B Windows 7

Hibernation takes considerably longer because the entire contents of mem-
ory must be transferred to disk before the system is turned off. However, the
fact that the system is, in fact, turned off is a significant advantage. If there
is a loss of power to the system, as when the battery is swapped on a lap-
top or a desktop system is unplugged, the saved system data will not be lost.
Unlike shutdown, hibernation saves the currently running system so a user can
resume where she left off, and because hibernation does not require power, a
system can remain in hibernation indefinitely.

Like the PnP manager, the power manager provides notifications to the
rest of the system about changes in the power state. Some applications want to
know when the system is about to be shut down so they can start saving their
states to disk.

B.3.3.10 Registry

Windows keeps much of its configuration information in internal databases,
called hives, that are managed by the Windows configuration manager, which
is commonly known as the registry. There are separate hives for system
information, default user preferences, software installation, security, and boot
options. Because the information in the system hive is required to boot the
system, the registry manager is implemented as a component of the executive.

The registry represents the configuration state in each hive as a hierarchical
namespace of keys (directories), each ofwhich can contain a set of typedvalues,
such as UNICODE string, ANSI string, integer, or untyped binary data. In theory,
new keys and values are created and initialized as new software is installed;
then they are modified to reflect changes in the configuration of that software.
In practice, the registry is often used as a general-purpose database, as an
interprocess-communication mechanism, and for many other such inventive
purposes.

Restarting applications, or even the system, every time a configuration
change was made would be a nuisance. Instead, programs rely on various
kinds of notifications, such as those provided by the PnP and powermanagers,
to learn about changes in the system configuration. The registry also supplies
notifications; it allows threads to register to be notified when changes are
made to some part of the registry. The threads can thus detect and adapt to
configuration changes recorded in the registry itself.

Whenever significant changes are made to the system, such as when
updates to the operating system or drivers are installed, there is a danger that
the configuration data may be corrupted (for example, if a working driver is
replaced by a nonworking driver or an application fails to install correctly and
leaves partial information in the registry). Windows creates a system restore
point before making such changes. The restore point contains a copy of the
hives before the change and can be used to return to this version of the hives
and thereby get a corrupted system working again.

To improve the stability of the registry configuration, Windows added a
transaction mechanism beginning with Windows Vista that can be used to
prevent the registry from being partially updated with a collection of related
configuration changes. Registry transactions can be part of more general trans-
actions administered by the kernel transactionmanager (KTM), which can also

B.3 System Components 33

include file-system transactions. KTM transactions do not have the full seman-
tics found in normal database transactions, and they have not supplanted the
system restore facility for recovering fromdamage to the registry configuration
caused by software installation.

B.3.3.11 Booting

The booting of a Windows PC begins when the hardware powers on and
firmware begins executing from ROM. In older machines, this firmware was
known as the BIOS, but more modern systems use UEFI (the Unified Extensible
Firmware Interface), which is faster and more general and makes better use
of the facilities in contemporary processors. The firmware runs power-on self-
test (POST) diagnostics; identifies many of the devices attached to the system
and initializes them to a clean, power-up state; and then builds the description
used by the advanced configuration and power interface (ACPI). Next, the
firmware finds the system disk, loads the Windows bootmgr program, and
begins executing it.

In a machine that has been hibernating, the winresume program is loaded
next. It restores the running system from disk, and the system continues execu-
tion at the point it had reached right before hibernating. In a machine that has
been shut down, the bootmgr performs further initialization of the system and
then loads winload. This program loads hal.dll, the kernel (ntoskrnl.exe),
any drivers needed in booting, and the system hive. winload then transfers
execution to the kernel.

The kernel initializes itself and creates two processes. The system pro-
cess contains all the internal kernel worker threads and never executes in
user mode. The first user-mode process created is SMSS, for session manager
subsystem, which is similar to the INIT (initialization) process in UNIX. SMSS
performs further initialization of the system, including establishing the paging
files, loading more device drivers, and managing the Windows sessions. Each
session is used to represent a logged-on user, except for session 0, which is
used to run system-wide background services, such as LSASS and SERVICES.
A session is anchored by an instance of the CSRSS process. Each session other
than 0 initially runs the WINLOGON process. This process logs on a user and
then launches the EXPLORER process, which implements the Windows GUI
experience. The following list itemizes some of these aspects of booting:

• SMSS completes system initialization and then starts up session 0 and the
first login session.

• WININIT runs in session 0 to initialize usermode and start LSASS, SERVICES,
and the local session manager, LSM.

• LSASS, the security subsystem, implements facilities such as authentication
of users.

• SERVICES contains the service control manager, or SCM, which supervises
all background activities in the system, including user-mode services. A
number of services will have registered to start when the system boots.
Others will be started only on demand or when triggered by an event such
as the arrival of a device.

34 Appendix B Windows 7

• CSRSS is the Win32 environmental subsystem process. It is started in every
session—unlike the POSIX subsystem, which is started only on demand
when a POSIX process is created.

• WINLOGON is run in each Windows session other than session 0 to log on
a user.

The system optimizes the boot process by prepaging from files on disk
based on previous boots of the system. Disk access patterns at boot are also
used to lay out system files on disk to reduce the number of I/O operations
required. The processes necessary to start the system are reduced by grouping
services into fewer processes. All of these approaches contribute to a dramatic
reduction in system boot time. Of course, system boot time is less important
than it once was because of the sleep and hibernation capabilities of Windows.

B.4 Terminal Services and Fast User Switching

Windows supports a GUI-based console that interfaces with the user via key-
board, mouse, and display. Most systems also support audio and video. Audio
input is used byWindows voice-recognition software; voice recognitionmakes
the system more convenient and increases its accessibility for users with dis-
abilities. Windows 7 added support formulti-touch hardware, allowing users
to input data by touching the screen and making gestures with one or more
fingers. Eventually, the video-input capability, which is currently used for com-
munication applications, is likely to be used for visually interpreting gestures,
as Microsoft has demonstrated for its Xbox 360 Kinect product. Other future
input experiences may evolve from Microsoft’s surface computer. Most often
installed at public venues, such as hotels and conference centers, the surface
computer is a table surface with special cameras underneath. It can track the
actions of multiple users at once and recognize objects that are placed on top.

The PC was, of course, envisioned as a personal computer—an inherently
single-user machine. ModernWindows, however, supports the sharing of a PC
among multiple users. Each user that is logged on using the GUI has a session
created to represent the GUI environment he will be using and to contain all the
processes created to run his applications. Windows allows multiple sessions to
exist at the same time on a single machine. However, Windows only supports
a single console, consisting of all the monitors, keyboards, and mice connected
to the PC. Only one session can be connected to the console at a time. From the
logon screen displayed on the console, users can create new sessions or attach
to an existing session that was previously created. This allows multiple users
to share a single PC without having to log off and on between users. Microsoft
calls this use of sessions fast user switching.

Users can also create new sessions, or connect to existing sessions, on one
PC from a session running on another Windows PC. The terminal server (TS)
connects one of the GUI windows in a user’s local session to the new or existing
session, called a remote desktop, on the remote computer. The most common
use of remote desktops is for users to connect to a session on their work PC
from their home PC.

Many corporations use corporate terminal-server systems maintained in
data centers to run all user sessions that access corporate resources, rather than

B.5 File System 35

allowing users to access those resources from the PCs in each user’s office. Each
server computer may handle many dozens of remote-desktop sessions. This
is a form of thin-client computing, in which individual computers rely on a
server for many functions. Relying on data-center terminal servers improves
reliability, manageability, and security of the corporate computing resources.

The TS is also used byWindows to implement remote assistance. A remote
user can be invited to share a session with the user logged on to the session on
the console. The remote user can watch the user’s actions and even be given
control of the desktop to help resolve computing problems.

B.5 File System

The native file system in Windows is NTFS. It is used for all local volumes.
However, associatedUSB thumbdrives, flashmemory on cameras, and external
disks may be formatted with the 32-bit FAT file system for portability. FAT is a
much older file-system format that is understood by many systems besides
Windows, such as the software running on cameras. A disadvantage is that
the FAT file system does not restrict file access to authorized users. The only
solution for securing data with FAT is to run an application to encrypt the data
before storing it on the file system.

In contrast, NTFS uses ACLs to control access to individual files and sup-
ports implicit encryption of individual files or entire volumes (usingWindows
BitLocker feature). NTFS implements many other features as well, including
data recovery, fault tolerance, very large files and file systems, multiple data
streams, UNICODE names, sparse files, journaling, volume shadow copies, and
file compression.

B.5.1 NTFS Internal Layout

The fundamental entity in NTFS is a volume. A volume is created by the Win-
dows logical disk management utility and is based on a logical disk partition.
Avolumemay occupy a portion of a disk or an entire disk, or may span several
disks.

NTFS does not deal with individual sectors of a disk but instead uses clus-
ters as the units of disk allocation. A cluster is a number of disk sectors that is
a power of 2. The cluster size is configured when an NTFS file system is format-
ted. The default cluster size is based on the volume size—4 KB for volumes
larger than 2 GB. Given the size of today’s disks, it may make sense to use
cluster sizes larger than the Windows defaults to achieve better performance,
although these performance gains will come at the expense of more internal
fragmentation.

NTFS uses logical cluster numbers (LCNs) as disk addresses. It assigns them
by numbering clusters from the beginning of the disk to the end. Using this
scheme, the system can calculate a physical disk offset (in bytes) bymultiplying
the LCN by the cluster size.

A file in NTFS is not a simple byte stream as it is in UNIX; rather, it is a
structured object consisting of typed attributes. Each attribute of a file is an
independent byte stream that can be created, deleted, read, and written. Some
attribute types are standard for all files, including the file name (or names, if
the file has aliases, such as an MS-DOS short name), the creation time, and the

36 Appendix B Windows 7

security descriptor that specifies the access control list. User data are stored in
data attributes.

Most traditional data files have an unnamed data attribute that contains
all the file’s data. However, additional data streams can be created with
explicit names. For instance, inMacintosh files stored on aWindows server, the
resource fork is a named data stream. The IProp interfaces of the Component
Object Model (COM) use a named data stream to store properties on ordinary
files, including thumbnails of images. In general, attributes may be added as
necessary and are accessed using a file-name:attribute syntax. NTFS returns
only the size of the unnamed attribute in response to file-query operations,
such as when running the dir command.

Every file inNTFS is described by one ormore records in an array stored in a
special file called the master file table (MFT). The size of a record is determined
when the file system is created; it ranges from 1 to 4 KB. Small attributes
are stored in the MFT record itself and are called resident attributes. Large
attributes, such as the unnamed bulk data, are called nonresident attributes
and are stored in one or more contiguous extents on the disk. A pointer to
each extent is stored in the MFT record. For a small file, even the data attribute
may fit inside the MFT record. If a file has many attributes—or if it is highly
fragmented, so that many pointers are needed to point to all the fragments
—one record in the MFT might not be large enough. In this case, the file is
described by a record called the base file record, which contains pointers to
overflow records that hold the additional pointers and attributes.

Each file in an NTFS volume has a unique ID called a file reference. The file
reference is a 64-bit quantity that consists of a 48-bit file number and a 16-bit
sequence number. The file number is the record number (that is, the array slot)
in the MFT that describes the file. The sequence number is incremented every
time an MFT entry is reused. The sequence number enables NTFS to perform
internal consistency checks, such as catching a stale reference to a deleted file
after the MFT entry has been reused for a new file.

B.5.1.1 NTFS B+ Tree

As in UNIX, the NTFS namespace is organized as a hierarchy of directories. Each
directoryuses a data structure called aB+ tree to store an index of the file names
in that directory. In a B+ tree, the length of every path from the root of the tree to
a leaf is the same, and the cost of reorganizing the tree is eliminated. The index
root of a directory contains the top level of the B+ tree. For a large directory,
this top level contains pointers to disk extents that hold the remainder of the
tree. Each entry in the directory contains the name and file reference of the
file, as well as a copy of the update timestamp and file size taken from the
file’s resident attributes in the MFT. Copies of this information are stored in the
directory so that a directory listing can be efficiently generated. Because all the
file names, sizes, and update times are available from the directory itself, there
is no need to gather these attributes from the MFT entries for each of the files.

B.5.1.2 NTFS Metadata

The NTFS volume’s metadata are all stored in files. The first file is the MFT. The
second file, which is used during recovery if the MFT is damaged, contains a

B.5 File System 37

copy of the first 16 entries of the MFT. The next few files are also special in
purpose. They include the files described below.

• The log file records all metadata updates to the file system.

• The volume file contains the name of the volume, the version of NTFS that
formatted the volume, and a bit that tells whether the volume may have
been corrupted and needs to be checked for consistency using the chkdsk
program.

• The attribute-definition table indicates which attribute types are used in
the volume and what operations can be performed on each of them.

• The root directory is the top-level directory in the file-system hierarchy.

• The bitmap file indicates which clusters on a volume are allocated to files
and which are free.

• The boot file contains the startup code for Windows and must be located
at a particular disk address so that it can be found easily by a simple ROM
bootstrap loader. The boot file also contains the physical address of the
MFT.

• The bad-cluster file keeps track of any bad areas on the volume; NTFS uses
this record for error recovery.

Keeping all the NTFS metadata in actual files has a useful property. As dis-
cussed in Section B.3.3.6, the cache manager caches file data. Since all the NTFS
metadata reside in files, these data can be cached using the same mechanisms
used for ordinary data.

B.5.2 Recovery

In many simple file systems, a power failure at the wrong time can damage
the file-system data structures so severely that the entire volume is scrambled.
Many UNIX file systems, including UFS but not ZFS, store redundant metadata
on the disk, and they recover from crashes by using the fsck program to check
all the file-system data structures and restore them forcibly to a consistent
state. Restoring them often involves deleting damaged files and freeing data
clusters that had been written with user data but not properly recorded in the
file system’s metadata structures. This checking can be a slow process and can
cause the loss of significant amounts of data.

NTFS takes a different approach to file-system robustness. In NTFS, all file-
system data-structure updates are performed inside transactions. Before a data
structure is altered, the transaction writes a log record that contains redo and
undo information. After the data structure has been changed, the transaction
writes a commit record to the log to signify that the transaction succeeded.

After a crash, the system can restore the file-system data structures to
a consistent state by processing the log records, first redoing the operations
for committed transactions and then undoing the operations for transactions
that did not commit successfully before the crash. Periodically (usually every
5 seconds), a checkpoint record is written to the log. The system does not
need log records prior to the checkpoint to recover from a crash. They can be

38 Appendix B Windows 7

discarded, so the log file does not grow without bounds. The first time after
system startup that an NTFS volume is accessed, NTFS automatically performs
file-system recovery.

This scheme does not guarantee that all the user-file contents are correct
after a crash. It ensures only that the file-system data structures (the metadata
files) are undamaged and reflect some consistent state that existed prior to the
crash. It would be possible to extend the transaction scheme to cover user files,
and Microsoft took some steps to do this in Windows Vista.

The log is stored in the third metadata file at the beginning of the volume.
It is created with a fixed maximum size when the file system is formatted. It
has two sections: the logging area, which is a circular queue of log records, and
the restart area, which holds context information, such as the position in the
logging area where NTFS should start reading during a recovery. In fact, the
restart area holds two copies of its information, so recovery is still possible if
one copy is damaged during the crash.

The logging functionality is provided by the log-file service. In addition
to writing the log records and performing recovery actions, the log-file service
keeps track of the free space in the log file. If the free space gets too low, the log-
file service queues pending transactions, andNTFS halts all new I/O operations.
After the in-progress operations complete, NTFS calls the cache manager to
flush all data and then resets the log file and performs the queued transactions.

B.5.3 Security

The security of an NTFS volume is derived from the Windows object model.
Each NTFS file references a security descriptor, which specifies the owner of the
file, and an access-control list, which contains the access permissions granted
or denied to each user or group listed. Early versions of NTFS used a separate
security descriptor as an attribute of each file. Beginning with Windows 2000,
the security-descriptors attribute points to a shared copy, with a significant
savings in disk and caching space; many, many files have identical security
descriptors.

In normal operation, NTFS does not enforce permissions on traversal of
directories in file path names. However, for compatibility with POSIX, these
checks can be enabled. Traversal checks are inherently more expensive, since
modern parsing of file path names uses prefix matching rather than directory-
by-directory parsing of path names. Prefix matching is an algorithm that looks
up strings in a cache and finds the entry with the longest match—for example,
an entry for ∖foo∖bar∖dirwould be a match for ∖foo∖bar∖dir2∖dir3∖myfile.
The prefix-matching cache allows path-name traversal to begin much deeper
in the tree, savingmany steps. Enforcing traversal checksmeans that the user’s
access must be checked at each directory level. For instance, a user might lack
permission to traverse ∖foo∖bar, so starting at the access for ∖foo∖bar∖dir
would be an error.

B.5.4 Volume Management and Fault Tolerance

FtDisk is the fault-tolerant disk driver for Windows. When installed, it pro-
vides several ways to combine multiple disk drives into one logical volume so
as to improve performance, capacity, or reliability.

B.5 File System 39

LCNs 0–128000

LCNs 128001–783361

disk 1 (2.5 GB) disk 2 (2.5 GB)

disk C: (FAT) 2 GB

logical drive D: (NTFS) 3 GB

Figure B.7 Volume set on two drives.

B.5.4.1 Volume Sets and RAID Sets

One way to combine multiple disks is to concatenate them logically to form a
large logical volume, as shown in Figure B.7. In Windows, this logical volume,
called a volume set, can consist of up to 32 physical partitions. A volume set
that contains an NTFS volume can be extended without disturbance of the data
already stored in the file system. The bitmap metadata on the NTFS volume are
simply extended to cover the newly added space. NTFS continues to use the
same LCN mechanism that it uses for a single physical disk, and the FtDisk
driver supplies the mapping from a logical-volume offset to the offset on one
particular disk.

Another way to combine multiple physical partitions is to interleave their
blocks in round-robin fashion to form a stripe set. This scheme is also called
RAID level 0, or disk striping. (Formore on RAID (redundant arrays of inexpen-
sive disks), see Section 11.8.) FtDisk uses a stripe size of 64 KB. The first 64 KB
of the logical volume are stored in the first physical partition, the second 64 KB
in the second physical partition, and so on, until each partition has contributed
64 KB of space. Then, the allocation wraps around to the first disk, allocating
the second 64-KB block. A stripe set forms one large logical volume, but the
physical layout can improve the I/O bandwidth, because for a large I/O, all the
disks can transfer data in parallel. Windows also supports RAID level 5, stripe
set with parity, and RAID level 1, mirroring.

B.5.4.2 Sector Sparing and Cluster Remapping

To deal with disk sectors that go bad, FtDisk uses a hardware technique called
sector sparing, and NTFS uses a software technique called cluster remapping.
Sector sparing is a hardware capability provided by many disk drives. When
a disk drive is formatted, it creates a map from logical block numbers to good
sectors on the disk. It also leaves extra sectors unmapped, as spares. If a sector
fails, FtDisk instructs the disk drive to substitute a spare. Cluster remapping

40 Appendix B Windows 7

is a software technique performed by the file system. If a disk block goes
bad, NTFS substitutes a different, unallocated block by changing any affected
pointers in the MFT. NTFS also makes a note that the bad block should never be
allocated to any file.

When a disk block goes bad, the usual outcome is a data loss. But sector
sparing or cluster remapping can be combined with fault-tolerant volumes to
mask the failure of a disk block. If a read fails, the system reconstructs the
missing data by reading the mirror or by calculating the exclusive or parity
in a stripe set with parity. The reconstructed data are stored in a new location
that is obtained by sector sparing or cluster remapping.

B.5.5 Compression

NTFS can perform data compression on individual files or on all data files
in a directory. To compress a file, NTFS divides the file’s data into compres-
sion units, which are blocks of 16 contiguous clusters. When a compression
unit is written, a data-compression algorithm is applied. If the result fits into
fewer than 16 clusters, the compressed version is stored. When reading, NTFS
can determine whether data have been compressed: if they have been, the
length of the stored compression unit is less than 16 clusters. To improve per-
formance when reading contiguous compression units, NTFS prefetches and
decompresses ahead of the application requests.

For sparse files or files that contain mostly zeros, NTFS uses another tech-
nique to save space. Clusters that contain only zeros because they have never
been written are not actually allocated or stored on disk. Instead, gaps are left
in the sequence of virtual-cluster numbers stored in the MFT entry for the file.
When reading a file, if NTFS finds a gap in the virtual-cluster numbers, it just
zero-fills that portion of the caller’s buffer. This technique is also used by UNIX.

B.5.6 Mount Points, Symbolic Links, and Hard Links

Mount points are a form of symbolic link specific to directories on NTFS that
were introduced in Windows 2000. They provide a mechanism for organizing
disk volumes that is more flexible than the use of global names (like drive
letters). A mount point is implemented as a symbolic link with associated
data that contains the true volume name. Ultimately, mount points will sup-
plant drive letters completely, but there will be a long transition due to the
dependence of many applications on the drive-letter scheme.

Windows Vista introduced support for a more general form of symbolic
links, similar to those found in UNIX. The links can be absolute or relative, can
point to objects that do not exist, and can point to both files and directories
even across volumes. NTFS also supports hard links, where a single file has an
entry in more than one directory of the same volume.

B.5.7 Change Journal

NTFS keeps a journal describing all changes that have been made to the file
system. User-mode services can receive notifications of changes to the journal
and then identify what files have changed by reading from the journal. The
search indexer service uses the change journal to identify files that need to be

B.6 Networking 41

re-indexed. The file-replication service uses it to identify files that need to be
replicated across the network.

B.5.8 Volume Shadow Copies

Windows implements the capability of bringing a volume to a known state
and then creating a shadow copy that can be used to back up a consistent
view of the volume. This technique is known as snapshots in some other file
systems.Making a shadow copy of a volume is a form of copy-on-write, where
blocks modified after the shadow copy is created are stored in their original
form in the copy. To achieve a consistent state for the volume requires the
cooperation of applications, since the system cannot knowwhen the data used
by the application are in a stable state from which the application could be
safely restarted.

The server version of Windows uses shadow copies to efficiently maintain
old versions of files stored on file servers. This allows users to see documents
stored on file servers as they existed at earlier points in time. The user can use
this feature to recover files that were accidentally deleted or simply to look at
a previous version of the file, all without pulling out backup media.

B.6 Networking

Windows supports both peer-to-peer and client–server networking. It also
has facilities for network management. The networking components in Win-
dows provide data transport, interprocess communication, file sharing across
a network, and the ability to send print jobs to remote printers.

B.6.1 Network Interfaces

To describe networking inWindows, we must first mention two of the internal
networking interfaces: the network device interface specification (NDIS) and
the transport driver interface (TDI). The NDIS interface was developed in 1989
byMicrosoft and 3Com to separate network adapters from transport protocols
so that either could be changed without affecting the other. NDIS resides at
the interface between the data-link and network layers in the ISO model and
enables many protocols to operate over many different network adapters. In
terms of the ISO model, the TDI is the interface between the transport layer
(layer 4) and the session layer (layer 5). This interface enables any session-layer
component to use any available transport mechanism. (Similar reasoning led
to the streams mechanism in UNIX.) The TDI supports both connection-based
and connectionless transport and has functions to send any type of data.

B.6.2 Protocols

Windows implements transport protocols as drivers. These drivers can be
loaded and unloaded from the system dynamically, although in practice the
system typically has to be rebooted after a change. Windows comes with
several networking protocols. Next, we discuss a number of these protocols.

42 Appendix B Windows 7

B.6.2.1 Server-Message Block

The server-message-block (SMB) protocol was first introduced in MS-DOS 3.1.
The system uses the protocol to send I/O requests over the network. The SMB
protocol has four message types. Session control messages are commands
that start and end a redirector connection to a shared resource at the server. A
redirector uses File messages to access files at the server. Printer messages
are used to send data to a remote print queue and to receive status information
from the queue, and Messagemessages are used to communicate with another
workstation. A version of the SMB protocol was published as the common
Internet file system (CIFS) and is supported on a number of operating systems.

B.6.2.2 Transmission Control Protocol/Internet Protocol

The transmission control protocol/Internet protocol (TCP/IP) suite that is used
on the Internet has become the de facto standard networking infrastructure.
Windows uses TCP/IP to connect to a wide variety of operating systems
and hardware platforms. The Windows TCP/IP package includes the simple
network-management protocol (SNM), the dynamic host-configuration proto-
col (DHCP), and the older Windows Internet name service (WINS). Windows
Vista introduced a new implementation of TCP/IP that supports both IPv4
and IPv6 in the same network stack. This new implementation also supports
offloading of the network stack onto advanced hardware, to achieve very high
performance for servers.

Windows provides a software firewall that limits the TCP ports that can be
used by programs for network communication. Network firewalls are com-
monly implemented in routers and are a very important security measure.
Having a firewall built into the operating system makes a hardware router
unnecessary, and it also providesmore integratedmanagement and easier use.

B.6.2.3 Point-to-Point Tunneling Protocol

The point-to-point tunneling protocol (PPTP) is a protocol provided by Win-
dows to communicate between remote-access servermodules running onWin-
dows server machines and other client systems that are connected over the
Internet. The remote-access servers can encrypt data sent over the connec-
tion, and they support multiprotocol virtual private networks (VPNs) over the
Internet.

B.6.2.4 HTTP Protocol

The HTTP protocol is used to get/put information using the World WideWeb.
Windows implements HTTP using a kernel-mode driver, so web servers can
operate with a low-overhead connection to the networking stack. HTTP is a
fairly general protocol that Windows makes available as a transport option for
implementing RPC.

B.6.2.5 Web-Distributed Authoring and Versioning Protocol

Web-distributed authoring and versioning (WebDAV) is an HTTP-based proto-
col for collaborative authoring across a network. Windows builds a WebDAV

B.6 Networking 43

redirector into the file system. Being built directly into the file system enables
WebDAV to work with other file-system features, such as encryption. Personal
files can then be stored securely in a public place. Because WebDAV uses HTTP,
which is a get/put protocol, Windows has to cache the files locally so pro-
grams can use read and write operations on parts of the files.

B.6.2.6 Named Pipes

Named pipes are a connection-oriented messaging mechanism. A process can
use named pipes to communicate with other processes on the same machine.
Since named pipes are accessed through the file-system interface, the security
mechanisms used for file objects also apply to named pipes. The SMB protocol
supports named pipes, so they can also be used for communication between
processes on different systems.

The format of pipe names follows the uniform naming convention
(UNC). A UNC name looks like a typical remote file name. The format is
∖∖server name∖share name∖x∖y∖z, where server name identifies a server
on the network; share name identifies any resource that is made available
to network users, such as directories, files, named pipes, and printers; and
∖x∖y∖z is a normal file path name.

B.6.2.7 Remote Procedure Calls

A remote procedure call (RPC) is a client–server mechanism that enables an
application on one machine to make a procedure call to code on another
machine. The client calls a local procedure—a stub routine—that packs its
arguments into a message and sends them across the network to a particular
server process. The client-side stub routine then blocks. Meanwhile, the server
unpacks the message, calls the procedure, packs the return results into a mes-
sage, and sends them back to the client stub. The client stub unblocks, receives
themessage, unpacks the results of the RPC, and returns them to the caller. This
packing of arguments is sometimes calledmarshaling. The client stub code and
the descriptors necessary to pack and unpack the arguments for an RPC are
compiled from a specification written in the Microsoft Interface Definition
Language.

The Windows RPC mechanism follows the widely used distributed-
computing-environment standard for RPC messages, so programs written to
use Windows RPCs are highly portable. The RPC standard is detailed. It hides
many of the architectural differences among computers, such as the sizes
of binary numbers and the order of bytes and bits in computer words, by
specifying standard data formats for RPC messages.

B.6.2.8 Component Object Model

The component object model (COM) is a mechanism for interprocess commu-
nication that was developed for Windows. COM objects provide a well-defined
interface to manipulate the data in the object. For instance, COM is the infras-
tructure used by Microsoft’s object linking and embedding (OLE) technology
for inserting spreadsheets into Microsoft Word documents. Many Windows
services provide COM interfaces. Windows has a distributed extension called

44 Appendix B Windows 7

DCOM that can be used over a network utilizing RPC to provide a transparent
method of developing distributed applications.

B.6.3 Redirectors and Servers

In Windows, an application can use the Windows I/O API to access files from
a remote computer as though they were local, provided that the remote com-
puter is running a CIFS server such as those provided byWindows. A redirector
is the client-side object that forwards I/O requests to a remote system, where
they are satisfied by a server. For performance and security, the redirectors and
servers run in kernel mode.

In more detail, access to a remote file occurs as follows:

1. The application calls the I/Omanager to request that a file be openedwith
a file name in the standard UNC format.

2. The I/O manager builds an I/O request packet, as described in Section
B.3.3.5.

3. The I/O manager recognizes that the access is for a remote file and calls a
driver called amultiple universal-naming-convention provider (MUP).

4. The MUP sends the I/O request packet asynchronously to all registered
redirectors.

5. A redirector that can satisfy the request responds to the MUP. To avoid
asking all the redirectors the same question in the future, the MUP uses a
cache to remember which redirector can handle this file.

6. The redirector sends the network request to the remote system.

7. The remote-system network drivers receive the request and pass it to the
server driver.

8. The server driver hands the request to the proper local file-system driver.

9. The proper device driver is called to access the data.

10. The results are returned to the server driver, which sends the data back
to the requesting redirector. The redirector then returns the data to the
calling application via the I/O manager.

Asimilar process occurs for applications that use theWin32 network API, rather
than the UNC services, except that a module called a multi-provider router is
used instead of a MUP.

For portability, redirectors and servers use the TDI API for network trans-
port. The requests themselves are expressed in a higher-level protocol, which
by default is the SMB protocol described in Section B.6.2. The list of redirectors
is maintained in the system hive of the registry.

B.6.3.1 Distributed File System

UNC names are not always convenient, because multiple file servers may be
available to serve the same content and UNC names explicitly include the name

B.6 Networking 45

of the server. Windows supports a distributed file-system (DFS) protocol that
allows a network administrator to serve up files from multiple servers using a
single distributed name space.

B.6.3.2 Folder Redirection and Client-Side Caching

To improve the PC experience for users who frequently switch among com-
puters, Windows allows administrators to give users roaming profiles, which
keepusers’ preferences and other settings on servers.Folder redirection is then
used to automatically store a user’s documents and other files on a server.

This works well until one of the computers is no longer attached to the
network, as when a user takes a laptop onto an airplane. To give users off-line
access to their redirected files, Windows uses client-side caching (CSC). CSC
is also used when the computer is on-line to keep copies of the server files
on the local machine for better performance. The files are pushed up to the
server as they are changed. If the computer becomes disconnected, the files are
still available, and the update of the server is deferred until the next time the
computer is online.

B.6.4 Domains

Many networked environments have natural groups of users, such as students
in a computer laboratory at school or employees in one department in a busi-
ness. Frequently, we want all the members of the group to be able to access
shared resources on their various computers in the group. Tomanage the global
access rights within such groups, Windows uses the concept of a domain. Pre-
viously, these domains had no relationship whatsoever to the domain-name
system (DNS) that maps Internet host names to IP addresses. Now, however,
they are closely related.

Specifically, a Windows domain is a group of Windows workstations and
servers that share a common security policy and user database. SinceWindows
uses the Kerberos protocol for trust and authentication, a Windows domain is
the same thing as a Kerberos realm. Windows uses a hierarchical approach
for establishing trust relationships between related domains. The trust rela-
tionships are based on DNS and allow transitive trusts that can flow up and
down the hierarchy. This approach reduces the number of trusts required for
n domains from n ∗ (n − 1) to O(n). The workstations in the domain trust the
domain controller to give correct information about the access rights of each
user (loaded into the user’s access token by LSASS). All users retain the ability to
restrict access to their ownworkstations, however, nomatter what any domain
controller may say.

B.6.5 Active Directory

Active Directory is the Windows implementation of lightweight directory-
access protocol (LDAP) services. Active Directory stores the topology infor-
mation about the domain, keeps the domain-based user and group accounts
and passwords, and provides a domain-based store for Windows features that
need it, such as Windows group policy. Administrators use group policies to
establish uniform standards for desktop preferences and software. For many

46 Appendix B Windows 7

corporate information-technology groups, this uniformity drastically reduces
the cost of computing.

B.7 Programmer Interface

TheWin32API is the fundamental interface to the capabilities ofWindows. This
section describes five main aspects of the Win32 API: access to kernel objects,
sharing of objects between processes, process management, interprocess com-
munication, and memory management.

B.7.1 Access to Kernel Objects

The Windows kernel provides many services that application programs can
use. Application programs obtain these services by manipulating kernel
objects. A process gains access to a kernel object named XXX by calling the
CreateXXX function to open a handle to an instance of XXX. This handle is
unique to the process. Depending on which object is being opened, if the
Create() function fails, it may return 0, or it may return a special constant
named INVALID HANDLE VALUE. A process can close any handle by calling the
CloseHandle() function, and the system may delete the object if the count of
handles referencing the object in all processes drops to zero.

B.7.2 Sharing Objects between Processes

Windows provides three ways to share objects between processes. The first
way is for a child process to inherit a handle to the object. When the parent
calls the CreateXXX function, the parent supplies a SECURITIES ATTRIBUTES
structure with the bInheritHandle field set to TRUE. This field creates an
inheritable handle. Next, the child process is created, passing a value of TRUE
to the CreateProcess() function’s bInheritHandle argument. Figure B.8
shows a code sample that creates a semaphore handle inherited by a child
process.

SECURITY ATTRIBUTES sa;
sa.nlength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
Handle a semaphore = CreateSemaphore(&sa, 1, 1, NULL);
char comand line[132];
ostrstream ostring(command line, sizeof(command line));
ostring << a semaphore << ends;
CreateProcess("another process.exe", command line,

NULL, NULL, TRUE, . . .);

Figure B.8 Code enabling a child to share an object by inheriting a handle.

B.7 Programmer Interface 47

// Process A
. . .
HANDLE a semaphore = CreateSemaphore(NULL, 1, 1, "MySEM1");
. . .

// Process B
. . .
HANDLE b semaphore = OpenSemaphore(SEMAPHORE ALL ACCESS,

FALSE, "MySEM1");
. . .

Figure B.9 Code for sharing an object by name lookup.

Assuming the child process knows which handles are shared, the parent
and child can achieve interprocess communication through the shared objects.
In the example in Figure B.8, the child process gets the value of the handle
from the first command-line argument and then shares the semaphore with
the parent process.

The second way to share objects is for one process to give the object a
name when the object is created and for the second process to open the name.
This method has two drawbacks: Windows does not provide a way to check
whether an object with the chosen name already exists, and the object name
space is global, without regard to the object type. For instance, two applications
may create and share a single object named “foo” when two distinct objects—
possibly of different types—were desired.

Named objects have the advantage that unrelated processes can readily
share them. The first process calls one of the CreateXXX functions and supplies
a name as a parameter. The second process gets a handle to share the object
by calling OpenXXX() (or CreateXXX) with the same name, as shown in the
example in Figure B.9.

The thirdway to share objects is via the DuplicateHandle() function. This
method requires some other method of interprocess communication to pass
the duplicated handle. Given a handle to a process and the value of a handle
within that process, a second process can get a handle to the same object and
thus share it. An example of this method is shown in Figure B.10.

B.7.3 Process Management

InWindows, a process is a loaded instance of an application and a thread is an
executable unit of code that can be scheduled by the kernel dispatcher. Thus,
a process contains one or more threads. A process is created when a thread
in some other process calls the CreateProcess() API. This routine loads any
dynamic link libraries used by the process and creates an initial thread in the
process. Additional threads can be created by the CreateThread() function.
Each thread is created with its own stack, which defaults to 1 MB unless
otherwise specified in an argument to CreateThread().

48 Appendix B Windows 7

// Process A wants to give Process B access to a semaphore

// Process A
HANDLE a semaphore = CreateSemaphore(NULL, 1, 1, NULL);
// send the value of the semaphore to Process B
// using a message or shared memory object
. . .

// Process B
HANDLE process a = OpenProcess(PROCESS ALL ACCESS, FALSE,

process id of A);
HANDLE b semaphore;
DuplicateHandle(process a, a semaphore,

GetCurrentProcess(), &b semaphore,
0, FALSE, DUPLICATE SAME ACCESS);

// use b semaphore to access the semaphore
. . .

Figure B.10 Code for sharing an object by passing a handle.

B.7.3.1 Scheduling Rule

Priorities in the Win32 environment are based on the native kernel (NT)
scheduling model, but not all priority values may be chosen. The Win32 API
uses four priority classes:

1. IDLE PRIORITY CLASS (NT priority level 4)

2. NORMAL PRIORITY CLASS (NT priority level 8)

3. HIGH PRIORITY CLASS (NT priority level 13)

4. REALTIME PRIORITY CLASS (NT priority level 24)

Processes are typically members of the NORMAL PRIORITY CLASS unless the
parent of the process was of the IDLE PRIORITY CLASS or another class was
specified when CreateProcess was called. The priority class of a process is
the default for all threads that execute in the process. It can be changed with
the SetPriorityClass() function or by passing an argument to the START
command. Only userswith the increase scheduling priority privilege canmove
a process into the REALTIME PRIORITY CLASS. Administrators and power users
have this privilege by default.

When a user is running an interactive process, the system needs to
schedule the process’s threads to provide good responsiveness. For this
reason, Windows has a special scheduling rule for processes in the NOR-
MAL PRIORITY CLASS. Windows distinguishes between the process associated
with the foreground window on the screen and the other (background)
processes. When a process moves into the foreground, Windows increases the
scheduling quantum for all its threads by a factor of 3; CPU-bound threads

B.7 Programmer Interface 49

in the foreground process will run three times longer than similar threads in
background processes.

B.7.3.2 Thread Priorities

A thread starts with an initial priority determined by its class. The priority
can be altered by the SetThreadPriority() function. This function takes an
argument that specifies a priority relative to the base priority of its class:

• THREAD PRIORITY LOWEST: base − 2

• THREAD PRIORITY BELOW NORMAL: base − 1

• THREAD PRIORITY NORMAL: base + 0

• THREAD PRIORITY ABOVE NORMAL: base + 1

• THREAD PRIORITY HIGHEST: base + 2

Two other designations are also used to adjust the priority. Recall from
Section B.3.2.2 that the kernel has two priority classes: 16–31 for the real-
time class and 1–15 for the variable class. THREAD PRIORITY IDLE sets the
priority to 16 for real-time threads and to 1 for variable-priority threads.
THREAD PRIORITY TIME CRITICAL sets the priority to 31 for real-time threads
and to 15 for variable-priority threads.

As discussed in Section B.3.2.2, the kernel adjusts the priority of a variable
class thread dynamically depending on whether the thread is I/O bound or
CPU bound. The Win32 API provides a method to disable this adjustment via
SetProcessPriorityBoost() and SetThreadPriorityBoost() functions.

B.7.3.3 Thread Suspend and Resume

A thread can be created in a suspended state or can be placed in a suspended
state later by use of the SuspendThread() function. Before a suspended thread
can be scheduled by the kernel dispatcher, it must be moved out of the sus-
pended state by use of the ResumeThread() function. Both functions set a
counter so that if a thread is suspended twice, it must be resumed twice before
it can run.

B.7.3.4 Thread Synchronization

To synchronize concurrent access to shared objects by threads, the kernel pro-
vides synchronization objects, such as semaphores and mutexes. These are
dispatcher objects, as discussed in Section B.3.2.2. Threads can also synchronize
with kernel services operating on kernel objects—such as threads, processes,
and files—because these are also dispatcher objects. Synchronization with ker-
nel dispatcher objects can be achieved by use of the WaitForSingleObject()
and WaitForMultipleObjects() functions; these functions wait for one or
more dispatcher objects to be signaled.

Another method of synchronization is available to threadswithin the same
process that want to execute code exclusively. TheWin32 critical section object
is a user-mode mutex object that can often be acquired and released without
entering the kernel. On a multiprocessor, a Win32 critical section will attempt
to spinwhile waiting for a critical section held by another thread to be released.

50 Appendix B Windows 7

If the spinning takes too long, the acquiring thread will allocate a kernel mutex
and yield its CPU. Critical sections are particularly efficient because the kernel
mutex is allocated only when there is contention and then used only after
attempting to spin. Most mutexes in programs are never actually contended,
so the savings are significant.

Before using a critical section, some thread in the process must call
InitializeCriticalSection(). Each thread that wants to acquire the
mutex calls EnterCriticalSection() and then later calls LeaveCritical-
Section() to release themutex. There is also a TryEnterCriticalSection()
function, which attempts to acquire the mutex without blocking.

For programs that want user-mode reader–writer locks rather than a
mutex, Win32 supports slim reader–writer (SRW) locks. SRW locks have
APIs similar to those for critical sections, such as InitializeSRWLock,
AcquireSRWLockXXX, and ReleaseSRWLockXXX, where XXX is either
Exclusive or Shared, depending on whether the thread wants write
access or just read access to the object protected by the lock. TheWin32 API also
supports condition variables, which can be used with either critical sections
or SRW locks.

B.7.3.5 Thread Pool

Repeatedly creating and deleting threads can be expensive for applications
and services that perform small amounts of work in each instantiation. The
Win32 thread pool provides user-mode programs with three services: a queue
to which work requests may be submitted (via the SubmitThreadpoolWork()
function), an API that can be used to bind callbacks towaitable handles (Regis-
terWaitForSingleObject()), and APIs to workwith timers (CreateThread-
poolTimer() and WaitForThreadpoolTimerCallbacks()) and to bind call-
backs to I/O completion queues (BindIoCompletionCallback()).

The goal of using a threadpool is to increase performance and reducemem-
ory footprint. Threads are relatively expensive, and each processor can only
be executing one thread at a time no matter how many threads are available.
The thread pool attempts to reduce the number of runnable threads by slightly
delaying work requests (reusing each thread for many requests) while provid-
ing enough threads to effectively utilize the machine’s CPUs. The wait and I/O-
and timer-callback APIs allow the thread pool to further reduce the number
of threads in a process, using far fewer threads than would be necessary if
a process were to devote separate threads to servicing each waitable handle,
timer, or completion port.

B.7.3.6 Fibers

A fiber is user-mode code that is scheduled according to a user-defined
scheduling algorithm. Fibers are completely a user-mode facility; the kernel is
not aware that they exist. The fibermechanism usesWindows threads as if they
were CPUs to execute the fibers. Fibers are cooperatively scheduled, meaning
that they are never preempted but must explicitly yield the thread on which
they are running. When a fiber yields a thread, another fiber can be scheduled
on it by the run-time system (the programming language run-time code).

The system creates a fiber by calling either ConvertThreadToFiber()
or CreateFiber(). The primary difference between these functions is that

B.7 Programmer Interface 51

CreateFiber() does not begin executing the fiber that was created. To begin
execution, the application must call SwitchToFiber(). The application can
terminate a fiber by calling DeleteFiber().

Fibers are not recommended for threads that use Win32 APIs rather than
standardC-library functions because of potential incompatibilities.Win32 user-
mode threads have a thread-environment block (TEB) that contains numerous
per-threadfields used by theWin32APIs. Fibersmust share the TEB of the thread
on which they are running. This can lead to problems when a Win32 interface
puts state information into the TEB for one fiber and then the information is
overwritten by a different fiber. Fibers are included in theWin32API to facilitate
the porting of legacy UNIX applications that were written for a user-mode
thread model such as Pthreads.

B.7.3.7 User-Mode Scheduling (UMS) and ConcRT

A new mechanism in Windows 7, user-mode scheduling (UMS), addresses
several limitations of fibers. First, recall that fibers are unreliable for executing
Win32 APIs because they do not have their own TEBs. When a thread running
a fiber blocks in the kernel, the user scheduler loses control of the CPU for a
time as the kernel dispatcher takes over scheduling. Problemsmay result when
fibers change the kernel state of a thread, such as the priority or impersonation
token, or when they start asynchronous I/O.

UMS provides an alternative model by recognizing that each Windows
thread is actually two threads: a kernel thread (KT) and a user thread (UT).
Each type of thread has its own stack and its own set of saved registers. The
KT and UT appear as a single thread to the programmer because UTs can
never block but must always enter the kernel, where an implicit switch to the
corresponding KT takes place. UMS uses each UT’s TEB to uniquely identify
the UT. When a UT enters the kernel, an explicit switch is made to the KT that
corresponds to the UT identified by the current TEB. The reason the kernel does
not know which UT is running is that UTs can invoke a user-mode scheduler,
as fibers do. But in UMS, the scheduler switches UTs, including switching the
TEBs.

When a UT enters the kernel, its KT may block. When this happens, the
kernel switches to a scheduling thread, which UMS calls a primary, and uses
this thread to reenter the user-mode scheduler so that it can pick another UT
to run. Eventually, a blocked KT will complete its operation and be ready to
return to user mode. Since UMS has already reentered the user-mode scheduler
to run a different UT, UMS queues the UT corresponding to the completed KT
to a completion list in user mode. When the user-mode scheduler is choosing
a new UT to switch to, it can examine the completion list and treat any UT on
the list as a candidate for scheduling.

Unlike fibers, UMS is not intended to be used directly by the program-
mer. The details of writing user-mode schedulers can be very challenging, and
UMS does not include such a scheduler. Rather, the schedulers come from pro-
gramming language libraries that build on top of UMS. Microsoft Visual Studio
2010 shippedwith Concurrency Runtime (ConcRT), a concurrent programming
framework for C++. ConcRT provides a user-mode scheduler together with
facilities for decomposing programs into tasks, which can then be scheduled
on the available CPUs. ConcRT provides support for par for styles of con-

52 Appendix B Windows 7

NTOS executive

Only primary thread runs in user-mode
Trap code switches to parked KT
KT blocks = primary returns to user-mode
KT unblocks & parks = queue UT completion

thread parking

UT completion list

kernel
user

user-mode
scheduler

trap code
primary
thread

KT0

UT0

UT1 UT0

KT1 KT2

KT0 blocks

>
>

Figure B.11 User-mode scheduling.

structs, aswell as rudimentary resourcemanagement and task synchronization
primitives. The key features of UMS are depicted in Figure B.11.

B.7.3.8 Winsock

Winsock is the Windows sockets API. Winsock is a session-layer interface
that is largely compatible with UNIX sockets but has some added Windows
extensions. It provides a standardized interface to many transport protocols
that may have different addressing schemes, so that any Winsock application
can run on anyWinsock-compliant protocol stack.Winsock underwent amajor
update in Windows Vista to add tracing, IPv6 support, impersonation, new
security APIs and many other features.

Winsock follows the Windows Open System Architecture (WOSA) model,
which provides a standard service provider interface (SPI) between applica-
tions and networking protocols. Applications can load and unload layered
protocols that build additional functionality, such as additional security, on
top of the transport protocol layers. Winsock supports asynchronous opera-
tions and notifications, reliable multicasting, secure sockets, and kernel mode
sockets. There is also support for simpler usage models, like the WSAConnect-
ByName() function, which accepts the target as strings specifying the name or
IP address of the server and the service or port number of the destination port.

B.7.4 IPC Using Windows Messaging

Win32 applications handle interprocess communication in several ways. One
way is by using shared kernel objects. Another is by using the Windows
messaging facility, an approach that is particularly popular for Win32
GUI applications. One thread can send a message to another thread or to a
window by calling PostMessage(), PostThreadMessage(), SendMessage(),
SendThreadMessage(), or SendMessageCallback(). Posting a message and
sending a message differ in this way: the post routines are asynchronous, they
return immediately, and the calling thread does not know when the message

B.7 Programmer Interface 53

// allocate 16 MB at the top of our address space
void *buf = VirtualAlloc(0, 0x1000000, MEM RESERVE | MEM TOP DOWN,

PAGE READWRITE);
// commit the upper 8 MB of the allocated space
VirtualAlloc(buf + 0x800000, 0x800000, MEM COMMIT, PAGE READWRITE);
// do something with the memory
. . .
// now decommit the memory
VirtualFree(buf + 0x800000, 0x800000, MEM DECOMMIT);
// release all of the allocated address space
VirtualFree(buf, 0, MEM RELEASE);

Figure B.12 Code fragments for allocating virtual memory.

is actually delivered. The send routines are synchronous: they block the caller
until the message has been delivered and processed.

In addition to sending a message, a thread can send data with the mes-
sage. Since processes have separate address spaces, the data must be copied.
The system copies data by calling SendMessage() to send a message of type
WM COPYDATA with a COPYDATASTRUCT data structure that contains the length
and address of the data to be transferred. When the message is sent, Windows
copies the data to a new block of memory and gives the virtual address of the
new block to the receiving process.

Every Win32 thread has its own input queue from which it receives mes-
sages. If a Win32 application does not call GetMessage() to handle events on
its input queue, the queue fills up, and after about five seconds, the system
marks the application as “Not Responding”.

B.7.5 Memory Management

TheWin32 API provides several ways for an application to usememory: virtual
memory, memory-mapped files, heaps, and thread-local storage.

B.7.5.1 Virtual Memory

An application calls VirtualAlloc() to reserve or commit virtual memory
and VirtualFree() to decommit or release the memory. These functions
enable the application to specify the virtual address at which the memory is
allocated. They operate on multiples of the memory page size. Examples of
these functions appear in Figure B.12.

A process may lock some of its committed pages into physical memory by
calling VirtualLock(). The maximum number of pages a process can lock is
30, unless the process first calls SetProcessWorkingSetSize() to increase the
maximum working-set size.

B.7.5.2 Memory-Mapping Files

Another way for an application to use memory is by memory-mapping a file
into its address space. Memory mapping is also a convenient way for two

54 Appendix B Windows 7

// open the file or create it if it does not exist
HANDLE hfile = CreateFile("somefile", GENERIC READ | GENERIC WRITE,

FILE SHARE READ | FILE SHARE WRITE, NULL,
OPEN ALWAYS, FILE ATTRIBUTE NORMAL, NULL);

// create the file mapping 8 MB in size
HANDLE hmap = CreateFileMapping(hfile, PAGE READWRITE,

SEC COMMIT, 0, 0x800000, "SHM 1");
// now get a view of the space mapped
void *buf = MapViewOfFile(hmap, FILE MAP ALL ACCESS,

0, 0, 0, 0x800000);
// do something with the mapped file
. . .
// now unmap the file
UnMapViewOfFile(buf);
CloseHandle(hmap);
CloseHandle(hfile);

Figure B.13 Code fragments for memory mapping of a file.

processes to share memory: both processes map the same file into their virtual
memory. Memory mapping is a multistage process, as you can see in the
example in Figure B.13.

If a processwants tomap some address space just to share amemory region
with another process, no file is needed. The process calls CreateFileMap-
ping() with a file handle of 0xffffffff and a particular size. The resulting
file-mapping object can be shared by inheritance, by name lookup, or by handle
duplication.

B.7.5.3 Heaps

Heaps provide a third way for applications to use memory, just as with mal-
loc() and free() in standard C. A heap in the Win32 environment is a region
of reserved address space. When a Win32 process is initialized, it is created
with adefault heap. SincemostWin32 applications aremultithreaded, access to
the heap is synchronized to protect the heap’s space-allocation data structures
from being damaged by concurrent updates by multiple threads.

Win32 provides several heap-management functions so that a process can
allocate and manage a private heap. These functions are HeapCreate(), Hea-
pAlloc(), HeapRealloc(), HeapSize(), HeapFree(), and HeapDestroy().
The Win32 API also provides the HeapLock() and HeapUnlock() functions to
enable a thread to gain exclusive access to a heap. Unlike VirtualLock(),
these functions perform only synchronization; they do not lock pages into
physical memory.

The original Win32 heap was optimized for efficient use of space. This
led to significant problems with fragmentation of the address space for larger
server programs that ran for long periods of time. A new low-fragmentation
heap (LFH) design introduced in Windows XP greatly reduced the fragmen-

Summary 55

// reserve a slot for a variable
DWORD var index = T1sAlloc();
// set it to the value 10
T1sSetValue(var index, 10);
// get the value
int var T1sGetValue(var index);
// release the index
T1sFree(var index);

Figure B.14 Code for dynamic thread-local storage.

tation problem. The Windows 7 heap manager automatically turns on LFH as
appropriate.

B.7.5.4 Thread-Local Storage

Afourth way for applications to use memory is through a thread-local storage
(TLS) mechanism. Functions that rely on global or static data typically fail to
work properly in a multithreaded environment. For instance, the C run-time
function strtok() uses a static variable to keep track of its current position
while parsing a string. For two concurrent threads to execute strtok() cor-
rectly, they need separate current position variables. TLS provides a way to
maintain instances of variables that are global to the function being executed
but not shared with any other thread.

TLS provides both dynamic and static methods of creating thread-local
storage. The dynamic method is illustrated in Figure B.14. The TLS mechanism
allocates global heap storage and attaches it to the thread environment block
thatWindows allocates to every user-mode thread. The TEB is readily accessible
by each thread and is used not just for TLS but for all the per-thread state
information in user mode.

To use a thread-local static variable, the application declares the variable
as follows to ensure that every thread has its own private copy:

declspec(thread) DWORD cur pos = 0;

B.8 Summary

Microsoft designed Windows to be an extensible, portable operating system
—one able to take advantage of new techniques and hardware. Windows
supports multiple operating environments and symmetric multiprocessing,
including both 32-bit and 64-bit processors and NUMA computers. The use of
kernel objects to provide basic services, along with support for client–server
computing, enablesWindows to support awide variety of application environ-
ments.Windows provides virtualmemory, integrated caching, and preemptive
scheduling. It supports elaborate security mechanisms and includes interna-
tionalization features. Windows runs on a wide variety of computers, so users
can choose and upgrade hardware to match their budgets and performance
requirements without needing to alter the applications they run.

56 Appendix B Windows 7

Practice Exercises

B.1 What type of operating system is Windows? Describe two of its major
features.

B.2 List the design goals of Windows. Describe two in detail.

B.3 Describe the booting process for a Windows system.

B.4 Describe the three main architectural layers of the Windows kernel.

B.5 What is the job of the object manager?

B.6 What types of services does the process manager provide?

B.7 What is a local procedure call?

B.8 What are the responsibilities of the I/O manager?

B.9 What types of networking doesWindows support? HowdoesWindows
implement transport protocols? Describe two networking protocols.

B.10 How is the NTFS namespace organized?

B.11 How does NTFS handle data structures? How does NTFS recover from a
system crash? What is guaranteed after a recovery takes place?

B.12 How does Windows allocate user memory?

B.13 Describe some of the ways in which an application can use memory via
the Win32 API.

Further Reading

[Russinovich et al. (2017)] provides an overview of Windows 7 and consider-
able technical detail about system internals and components. [Brown (2000)]
presents details of the security architecture of Windows.

The Microsoft Developer Network Library (http://msdn.microsoft.com)
supplies a wealth of information on Windows and other Microsoft products,
including documentation of all the published APIs.

[Iseminger (2000)] provides a good reference on theWindowsActiveDirec-
tory. Detailed discussions of writing programs that use the Win32 API appear
in [Richter (1997)].

The source code for a 2005 WRK version of the Windows kernel, together
with a collection of slides and other CRK curriculummaterials, is available from
www.microsoft.com/WindowsAcademic for use by universities.

Bibliography

[Brown (2000)] K. Brown, Programming Windows Security, Addison-Wesley
(2000).

[Iseminger (2000)] D. Iseminger, Active Directory Services for Microsoft Windows
2000. Technical Reference, Microsoft Press (2000).

http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=K Brown Programming Windows Security
http://msdn.microsoft.com
http://scholar.google.com/scholar?hl/en&q=D Iseminger Active Directory Services for Microsoft Windows 2000 Technical Reference
http://scholar.google.com/scholar?hl/en&q=J Richter Advanced Windows
http://www.microsoft.com/WindowsAcademic
http://scholar.google.com/scholar?hl/en&q=K Brown Programming Windows Security
http://scholar.google.com/scholar?hl/en&q=K Brown Programming Windows Security
http://scholar.google.com/scholar?hl/en&q=D Iseminger Active Directory Services for Microsoft Windows 2000 Technical Reference
http://scholar.google.com/scholar?hl/en&q=D Iseminger Active Directory Services for Microsoft Windows 2000 Technical Reference

Bibliography 57

[Richter (1997)] J. Richter, Advanced Windows, Microsoft Press (1997).

[Russinovich et al. (2017)] M.Russinovich,D.A. Solomon, andA. Ionescu,Win-
dows Internals–Part 1, Seventh Edition, Microsoft Press (2017).

http://scholar.google.com/scholar?hl/en&q=J Richter Advanced Windows
http://scholar.google.com/scholar?hl/en&q=J Richter Advanced Windows
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition
http://scholar.google.com/scholar?hl/en&q=M Russinovich and D A Solomon and A Ionescu Windows InternalsPart 1 SeventhEdition

	CPU Scheduling
	Basic Concepts
	Scheduling Criteria
	Scheduling Algorithms
	Thread Scheduling
	Multi-Processor Scheduling
	Real-Time CPU Scheduling
	Operating-System Examples
	Algorithm Evaluation
	Summary
	Exercises
	Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

