/17aen’a/ Y Appe
Geraing /\#X
Systems S}S

A1

Now that you understand the fundamental concepts of operating systems (CPU
scheduling, memory management, processes, and so on), we are in a position
to examine how these concepts have been applied in several older and highly
influential operating systems. Some of them (such as the XDS-940 and the THE
system) were one-of-a-kind systems; others (such as 0S/360) are widely used.
The order of presentation highlights the similarities and differences of the
systems; it is not strictly chronological or ordered by importance. The serious
student of operating systems should be familiar with all these systems.

In the bibliographical notes at the end of the chapter, we include references
to further reading about these early systems. The papers, written by the design-
ers of the systems, are important both for their technical content and for their
style and flavor.

CHAPTER OBJECTIVES

e Explain how operating-system features migrate over time from large com-
puter systems to smaller ones.

¢ Discuss the features of several historically important operating systems.

Feature Migration

One reason to study early architectures and operating systems is that a feature
that once ran only on huge systems may eventually make its way into very
small systems. Indeed, an examination of operating systems for mainframes
and microcomputers shows that many features once available only on main-
frames have been adopted for microcomputers. The same operating-system
concepts are thus appropriate for various classes of computers: mainframes,
minicomputers, microcomputers, and handhelds. To understand modern oper-
ating systems, then, you need to recognize the theme of feature migration and
the long history of many operating-system features, as shown in Figure A.1.
A good example of feature migration started with the Multiplexed Informa-
tion and Computing Services (MULTICS) operating system. MULTICS was devel-

1

2

A.2

Appendix A Influential Operating Systems

1950 1960 1970 1980 1990 2000 2010
MULTICS
mainframes «

no compilers time \ distributed
software shared multiuser systems

batch multiprocessor

resic!ent networked fault tolerant
monitors
- UNIX
minicomputers -
no compilers \
software . q :
time multlus\er multiprocessor
i shared
res@ent I EEo ked fault tolerant
monitors

clustered

UNIX
desktop computers - \‘

no compilers
software interactive multiprocessor
multiuSy networked
UNIX
handheld computers \a
no compilers

software

interactive

networked LINUX

LINUX
smart phones

multiprocessor

networked
interactive

Figure A.1 Migration of operating-system concepts and features.

oped from 1965 to 1970 at the Massachusetts Institute of Technology (MIT) as a
computing utility. It ran on a large, complex mainframe computer (the GE-645).
Many of the ideas that were developed for MULTICS were subsequently used at
Bell Laboratories (one of the original partners in the development of MULTICS)
in the design of UNIX. The UNIX operating system was designed around 1970
for a PDP-11 minicomputer. Around 1980, the features of UNIX became the basis
for UNIX-like operating systems on microcomputers, and these features are
included in several more recent operating systems for microcomputers, such
as Microsoft Windows, Windows XP, and the macOS operating system. Linux
includes some of these same features, and they can now be found on PDAs.

Early Systems

We turn our attention now to a historical overview of early computer systems.
We should note that the history of computing starts far before “computers”
with looms and calculators. We begin our discussion, however, with the com-
puters of the twentieth century.

Before the 1940s, computing devices were designed and implemented to
perform specific, fixed tasks. Modifying one of those tasks required a great deal
of effort and manual labor. All that changed in the 1940s when Alan Turing and
John von Neumann (and colleagues), both separately and together, worked on
the idea of a more general-purpose stored program computer. Such a machine

A.2 Early Systems 3

has both a program store and a data store, where the program store provides
instructions about what to do to the data.

This fundamental computer concept quickly generated a number of
general-purpose computers, but much of the history of these machines is
blurred by time and the secrecy of their development during World War II. It
is likely that the first working stored-program general-purpose computer was
the Manchester Mark 1, which ran successfully in 1949. The first commercial
computer—the Ferranti Mark 1, which went on sale in 1951—was its
offspring.

Early computers were physically enormous machines run from consoles.
The programmer, who was also the operator of the computer system, would
write a program and then would operate it directly from the operator’s console.
First, the program would be loaded manually into memory from the front panel
switches (one instruction at a time), from paper tape, or from punched cards.
Then the appropriate buttons would be pushed to set the starting address
and to start the execution of the program. As the program ran, the program-
mer /operator could monitor its execution by the display lights on the console.
If errors were discovered, the programmer could halt the program, examine
the contents of memory and registers, and debug the program directly from
the console. Output was printed or was punched onto paper tape or cards for
later printing.

A.2.1 Dedicated Computer Systems

As time went on, additional software and hardware were developed. Card
readers, line printers, and magnetic tape became commonplace. Assemblers,
loaders, and linkers were designed to ease the programming task. Libraries
of common functions were created. Common functions could then be copied
into a new program without having to be written again, providing software
reusability.

The routines that performed 1/0 were especially important. Each new 1/0
device had its own characteristics, requiring careful programming. A special
subroutine called a device driver—was written for each 1/0 device. A device
driver knows how the buffers, flags, registers, control bits, and status bits for
a particular device should be used. Each type of device has its own driver.
A simple task, such as reading a character from a paper-tape reader, might
involve complex sequences of device-specific operations. Rather than writing
the necessary code every time, the device driver was simply used from the
library.

Later, compilers for FORTRAN, COBOL, and other languages appeared, mak-
ing the programming task much easier but the operation of the computer more
complex. To prepare a FORTRAN program for execution, for example, the pro-
grammer would first need to load the FORTRAN compiler into the computer.
The compiler was normally kept on magnetic tape, so the proper tape would
need to be mounted on a tape drive. The program would be read through the
card reader and written onto another tape. The FORTRAN compiler produced
assembly-language output, which then had to be assembled. This procedure
required mounting another tape with the assembler. The output of the assem-
bler would need to be linked to supporting library routines. Finally, the binary
object form of the program would be ready to execute. It could be loaded into
memory and debugged from the console, as before.

4

Appendix A Influential Operating Systems

A significant amount of setup time could be involved in the running of a
job. Each job consisted of many separate steps:

Loading the FORTRAN compiler tape
Running the compiler

Unloading the compiler tape
Loading the assembler tape
Running the assembler

Unloading the assembler tape

Loading the object program

S A A o

Running the object program

If an error occurred during any step, the programmer/operator might have
to start over at the beginning. Each job step might involve the loading and
unloading of magnetic tapes, paper tapes, and punch cards.

The job setup time was a real problem. While tapes were being mounted or
the programmer was operating the console, the CPU sat idle. Remember that,
in the early days, few computers were available, and they were expensive. A
computer might have cost millions of dollars, not including the operational
costs of power, cooling, programmers, and so on. Thus, computer time was
extremely valuable, and owners wanted their computers to be used as much
as possible. They needed high utilization to get as much as they could from
their investments.

A.2.2 Shared Computer Systems

The solution was twofold. First, a professional computer operator was hired.
The programmer no longer operated the machine. As soon as one job was
finished, the operator could start the next. Since the operator had more experi-
ence with mounting tapes than a programmer, setup time was reduced. The
programmer provided whatever cards or tapes were needed, as well as a
short description of how the job was to be run. Of course, the operator could
not debug an incorrect program at the console, since the operator would not
understand the program. Therefore, in the case of program error, a dump of
memory and registers was taken, and the programmer had to debug from the
dump. Dumping the memory and registers allowed the operator to continue
immediately with the next job but left the programmer with the more difficult
debugging problem.

Second, jobs with similar needs were batched together and run through the
computer as a group to reduce setup time. For instance, suppose the operator
received one FORTRAN job, one COBOL job, and another FORTRAN job. If she ran
them in that order, she would have to set up for FORTRAN (load the compiler
tapes and so on), then set up for COBOL, and then set up for FORTRAN again. If
she ran the two FORTRAN programs as a batch, however, she could setup only
once for FORTRAN, saving operator time.

A.2 Early Systems 5

loader

monitor < job sequencing

control card
interpreter

user
program
area

Figure A.2 Memory layout for a resident monitor.

But there were still problems. For example, when a job stopped, the oper-
ator would have to notice that it had stopped (by observing the console),
determine why it stopped (normal or abnormal termination), dump memory
and register (if necessary), load the appropriate device with the next job, and
restart the computer. During this transition from one job to the next, the CPU
sat idle.

To overcome this idle time, people developed automatic job sequencing.
With this technique, the first rudimentary operating systems were created.
A small program, called a resident monitor, was created to transfer control
automatically from one job to the next (Figure A.2). The resident monitor is
always in memory (or resident).

When the computer was turned on, the resident monitor was invoked, and
itwould transfer control to a program. When the program terminated, it would
return control to the resident monitor, which would then go on to the next
program. Thus, the resident monitor would automatically sequence from one
program to another and from one job to another.

But how would the resident monitor know which program to execute?
Previously, the operator had been given a short description of what programs
were to be run on what data. Control cards were introduced to provide this
information directly to the monitor. The idea is simple. In addition to the
program or data for a job, the programmer supplied control cards, which
contained directives to the resident monitor indicating what program to run.
For example, a normal user program might require one of three programs to
run: the FORTRAN compiler (FTN), the assembler (ASM), or the user’s program
(RUN). We could use a separate control card for each of these:

$FTN— Execute the FORTRAN compiler.
$ASM—Execute the assembler.
$RUN—Execute the user program.

These cards tell the resident monitor which program to run.

Appendix A Influential Operating Systems

We can use two additional control cards to define the boundaries of each
job:

$JOB—First card of a job
$END—Final card of a job

These two cards might be useful in accounting for the machine resources used
by the programmer. Parameters can be used to define the job name, account
number to be charged, and so on. Other control cards can be defined for other
functions, such as asking the operator to load or unload a tape.

One problem with control cards is how to distinguish them from data or
program cards. The usual solution is to identify them by a special character or
pattern on the card. Several systems used the dollar-sign character ($) in the
first column to identify a control card. Others used a different code. IBM’s Job
Control Language (JCL) used slash marks (//) in the first two columns. Figure
A.3 shows a sample card-deck setup for a simple batch system.

A resident monitor thus has several identifiable parts:

¢ The control-card interpreter is responsible for reading and carrying out
the instructions on the cards at the point of execution.

¢ The loader is invoked by the control-card interpreter to load system pro-
grams and application programs into memory at intervals.

¢ The device drivers are used by both the control-card interpreter and the
loader for the system’s 1/O devices. Often, the system and application
programs are linked to these same device drivers, providing continuity in
their operation, as well as saving memory space and programming time.

These batch systems work fairly well. The resident monitor provides auto-
matic job sequencing as indicated by the control cards. When a control card
indicates that a program is to be run, the monitor loads the program into mem-
ory and transfers control to it. When the program completes, it transfers control

(‘$END
data for program
('$RUN
($LOAD
program to be compiled
($FTN
$JOB

Figure A.3 Card deck for a simple batch system.

A.2 Early Systems 7

back to the monitor, which reads the next control card, loads the appropriate
program, and so on. This cycle is repeated until all control cards are interpreted
for the job. Then the monitor automatically continues with the next job.

The switch to batch systems with automatic job sequencing was made to
improve performance. The problem, quite simply, is that humans are consid-
erably slower than computers. Consequently, it is desirable to replace human
operation with operating-system software. Automatic job sequencing elimi-
nates the need for human setup time and job sequencing.

Even with this arrangement, however, the CPU is often idle. The problem
is the speed of the mechanical 1/O devices, which are intrinsically slower
than electronic devices. Even a slow CPU works in the microsecond range,
with thousands of instructions executed per second. A fast card reader, in
contrast, might read 1,200 cards per minute (or 20 cards per second). Thus, the
difference in speed between the CPU and its I/O devices may be three orders of
magnitude or more. Over time, of course, improvements in technology resulted
in faster I/0O devices. Unfortunately, CPU speeds increased even faster, so that
the problem was not only unresolved but also exacerbated.

A.2.3 Overlapped I/O

One common solution to the I/0 problem was to replace slow card readers
(input devices) and line printers (output devices) with magnetic-tape units.
Most computer systems in the late 1950s and early 1960s were batch systems
reading from card readers and writing to line printers or card punches. The CPU
did not read directly from cards, however; instead, the cards were first copied
onto a magnetic tape via a separate device. When the tape was sufficiently full,
it was taken down and carried over to the computer. When a card was needed
for input to a program, the equivalent record was read from the tape. Similarly,
output was written to the tape, and the contents of the tape were printed later.
The card readers and line printers were operated off-line, rather than by the
main computer (Figure A.4).

An obvious advantage of off-line operation was that the main computer
was no longer constrained by the speed of the card readers and line printers
but was limited only by the speed of the much faster magnetic tape units.
The technique of using magnetic tape for all I/O could be applied with any

iy
— |cru| T —

card reader line printer
(a)
AEQ;’ el dEsddT SIS S
card reader tape drives tape drives line printer

(b)

Figure A.4 Operation of I/O devices (a) on-line and (b) off-line.

Appendix A Influential Operating Systems

similar equipment (such as card readers, card punches, plotters, paper tape,
and printers).

The real gain in off-line operation comes from the possibility of using
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU
can process input twice as fast as the reader can read cards, then two readers
working simultaneously can produce enough tape to keep the CPU busy. There
is a disadvantage, too, however—a longer delay in getting a particular job run.
The job must first be read onto tape. Then it must wait until enough additional
jobs are read onto the tape to “fill” it. The tape must then be rewound, unloaded,
hand-carried to the CPU, and mounted on a free tape drive. This process is not
unreasonable for batch systems, of course. Many similar jobs can be batched
onto a tape before it is taken to the computer.

Although off-line preparation of jobs continued for some time, it was
quickly replaced in most systems. Disk systems became widely available and
greatly improved on off-line operation. One problem with tape systems was
that the card reader could not write onto one end of the tape while the CPU
read from the other. The entire tape had to be written before it was rewound
and read, because tapes are by nature sequential-access devices. Disk systems
eliminated this problem by being random-access devices. Because the head is
moved from one area of the disk to another, it can switch rapidly from the area
on the disk being used by the card reader to store new cards to the position
needed by the CPU to read the “next” card.

In a disk system, cards are read directly from the card reader onto the disk.
The location of card images is recorded in a table kept by the operating system.
When a job is executed, the operating system satisfies its requests for card-
reader input by reading from the disk. Similarly, when the job requests the
printer to output a line, that line is copied into a system buffer and is written
to the disk. When the job is completed, the output is actually printed. This
form of processing is called spooling (Figure A.5); the name is an acronym for
simultaneous peripheral operation on-line. Spooling, in essence, uses the disk
as a huge buffer for reading as far ahead as possible on input devices and for
storing output files until the output devices are able to accept them.

disk
I/0
RN doeeh
CPU —
card reader line printer

Figure A.5 Spooling.

A.3

A.3 Atlas 9

Spooling is also used for processing data at remote sites. The CPU sends
the data via communication paths to a remote printer (or accepts an entire
input job from a remote card reader). The remote processing is done at its own
speed, with no CPU intervention. The CPU just needs to be notified when the
processing is completed, so that it can spool the next batch of data.

Spooling overlaps the 1/0 of one job with the computation of other jobs.
Even in a simple system, the spooler may be reading the input of one job while
printing the output of a different job. During this time, still another job (or other
jobs) may be executed, reading its “cards” from disk and “printing” its output
lines onto the disk.

Spooling has a direct beneficial effect on the performance of the system.
For the cost of some disk space and a few tables, the computation of one job
and the 1/0 of other jobs can take place at the same time. Thus, spooling can
keep both the CPU and the 1/0 devices working at much higher rates. Spooling
leads naturally to multiprogramming, which is the foundation of all modern
operating systems.

Atlas

The Atlas operating system was designed at the University of Manchester in
England in the late 1950s and early 1960s. Many of its basic features that were
novel at the time have become standard parts of modern operating systems.
Device drivers were a major part of the system. In addition, system calls were
added by a set of special instructions called extra codes.

Atlas was a batch operating system with spooling. Spooling allowed the
system to schedule jobs according to the availability of peripheral devices, such
as magnetic tape units, paper tape readers, paper tape punches, line printers,
card readers, and card punches.

The most remarkable feature of Atlas, however, was its memory manage-
ment. Core memory was new and expensive at the time. Many computers,
like the IBM 650, used a drum for primary memory. The Atlas system used a
drum for its main memory, but it had a small amount of core memory that was
used as a cache for the drum. Demand paging was used to transfer information
between core memory and the drum automatically.

The Atlas system used a British computer with 48-bit words. Addresses
were 24 bits but were encoded in decimal, which allowed 1 million words to
be addressed. At that time, this was an extremely large address space. The
physical memory for Atlas was a 98-KB-word drum and 16-KB words of core.
Memory was divided into 512-word pages, providing 32 frames in physical
memory. An associative memory of 32 registers implemented the mapping
from a virtual address to a physical address.

If a page fault occurred, a page-replacement algorithm was invoked. One
memory frame was always kept empty, so that a drum transfer could start
immediately. The page-replacement algorithm attempted to predict future
memory-accessing behavior based on past behavior. A reference bit for each
frame was set whenever the frame was accessed. The reference bits were read
into memory every 1,024 instructions, and the last 32 values of these bits were
retained. This history was used to define the time since the most recent ref-

10

Appendix A Influential Operating Systems

erence (f;) and the interval between the last two references (t,). Pages were
chosen for replacement in the following order:

1. Any page with t; > t, + 1 is considered to be no longer in use and is
replaced.

2. Ift; <t, for all pages, then replace the page with the largest value for t,
—t.

The page-replacement algorithm assumes that programs access memory in
loops. If the time between the last two references is t,, then another reference is
expected t, time units later. If a reference does not occur (t; > t,), it is assumed
that the page is no longer being used, and the page is replaced. If all pages
are still in use, then the page that will not be needed for the longest time is
replaced. The time to the next reference is expected to be t, — t;.

XDS-940

The XDS-940 operating system was designed at the University of California at
Berkeley in the early 1960s. Like the Atlas system, it used paging for memory
management. Unlike the Atlas system, it was a time-shared system. The paging
was used only for relocation; it was not used for demand paging. The virtual
memory of any user process was made up of 16-KB words, whereas the physical
memory was made up of 64-KB words. Each page was made up of 2-KB words.
The page table was kept in registers. Since physical memory was larger than
virtual memory, several user processes could be in memory at the same time.
The number of users could be increased by page sharing when the pages
contained read-only reentrant code. Processes were kept on a drum and were
swapped in and out of memory as necessary.

The XDS-940 system was constructed from a modified XDS-930. The mod-
ifications were typical of the changes made to a basic computer to allow an
operating system to be written properly. A user-monitor mode was added.
Certain instructions, such as I/0 and halt, were defined to be privileged. An
attempt to execute a privileged instruction in user mode would trap to the
operating system.

A system-call instruction was added to the user-mode instruction set. This
instruction was used to create new resources, such as files, allowing the operat-
ing system to manage the physical resources. Files, for example, were allocated
in 256-word blocks on the drum. A bitmap was used to manage free drum
blocks. Each file had an index block with pointers to the actual data blocks.
Index blocks were chained together.

The XDS-940 system also provided system calls to allow processes to cre-
ate, start, suspend, and destroy subprocesses. A programmer could construct
a system of processes. Separate processes could share memory for communi-
cation and synchronization. Process creation defined a tree structure, where a
process is the root and its subprocesses are nodes below it in the tree. Each of
the subprocesses could, in turn, create more subprocesses.

A.5

A.6

A.6 RC4000 1

THE

The THE operating system was designed at the Technische Hogeschool in
Eindhoven in the Netherlands in the mid-1960s. It was a batch system running
on a Dutch computer, the EL X8, with 32-KB of 27-bit words. The system was
mainly noted for its clean design, particularly its layer structure, and its use of
a set of concurrent processes employing semaphores for synchronization.

Unlike the processes in the XDS-940 system, the set of processes in the
THE system was static. The operating system itself was designed as a set of
cooperating processes. In addition, five user processes were created that served
as the active agents to compile, execute, and print user programs. When one
job was finished, the process would return to the input queue to select another
job.

A priority CPU-scheduling algorithm was used. The priorities were recom-
puted every 2 seconds and were inversely proportional to the amount of CPU
time used recently (in the last 8 to 10 seconds). This scheme gave higher priority
to I/O0-bound processes and to new processes.

Memory management was limited by the lack of hardware support. How-
ever, since the system was limited and user programs could be written only in
Algol, a software paging scheme was used. The Algol compiler automatically
generated calls to system routines, which made sure the requested information
was in memory, swapping if necessary. The backing store was a 512-KB-word
drum. A 512-word page was used, with an LRU page-replacement strategy.

Another major concern of the THE system was deadlock control. The
banker’s algorithm was used to provide deadlock avoidance.

Closely related to the THE system is the Venus system. The Venus system
was also a layer-structured design, using semaphores to synchronize processes.
The lower levels of the design were implemented in microcode, however, pro-
viding a much faster system. Paged-segmented memory was used for memory
management. In addition, the system was designed as a time-sharing system
rather than a batch system.

RC 4000

The RC 4000 system, like the THE system, was notable primarily for its design
concepts. It was designed in the late 1960s for the Danish 4000 computer
by Regnecentralen, particularly by Brinch-Hansen. The objective was not to
design a batch system, or a time-sharing system, or any other specific system.
Rather, the goal was to create an operating-system nucleus, or kernel, on which
a complete operating system could be built. Thus, the system structure was
layered, and only the lower levels—comprising the kernel —were provided.

The kernel supported a collection of concurrent processes. A round-robin
CPU scheduler was used. Although processes could share memory, the primary
communication and synchronization mechanism was the message system pro-
vided by the kernel. Processes could communicate with each other by exchang-
ing fixed-sized messages of eight words in length. All messages were stored in
buffers from a common buffer pool. When a message buffer was no longer
required, it was returned to the common pool.

12

Appendix A Influential Operating Systems

A message queue was associated with each process. It contained all the
messages that had been sent to that process but had not yet been received.
Messages were removed from the queue in FIFO order. The system supported
four primitive operations, which were executed atomically:

® send-message (in receiver, in message, out buffer)
* wait-message (out sender, out message, out buffer)
® send-answer (out result, in message, in buffer)

* wait-answer (out result, out message, in buffer)

The last two operations allowed processes to exchange several messages at a
time.

These primitives required that a process service its message queue in FIFO
order and that it block itself while other processes were handling its messages.
To remove these restrictions, the developers provided two additional commu-
nication primitives that allowed a process to wait for the arrival of the next
message or to answer and service its queue in any order:

* wait-event (in previous-buffer, out next-buffer, out result)

® get-event (out buffer)

I/0 devices were also treated as processes. The device drivers were code
that converted the device interrupts and registers into messages. Thus, a pro-
cess would write to a terminal by sending that terminal a message. The device
driver would receive the message and output the character to the terminal. An
input character would interrupt the system and transfer to a device driver. The
device driver would create a message from the input character and send it to a
waiting process.

CTSS

The Compatible Time-Sharing System (CTSS) was designed at MIT as an exper-
imental time-sharing system and first appeared in 1961. It was implemented
on an IBM 7090 and eventually supported up to 32 interactive users. The users
were provided with a set of interactive commands that allowed them to manip-
ulate files and to compile and run programs through a terminal.

The 7090 had a 32-KB memory made up of 36-bit words. The monitor used
5-KB words, leaving 27 KB for the users. User memory images were swapped
between memory and a fast drum. CPU scheduling employed a multilevel-
feedback-queue algorithm. The time quantum for level i was 2 x i time units.
If a program did not finish its CPU burst in one time quantum, it was moved
down to the next level of the queue, giving it twice as much time. The program
at the highest level (with the shortest quantum) was run first. The initial level
of a program was determined by its size, so that the time quantum was at least
as long as the swap time.

CTSS was extremely successful and was in use as late as 1972. Although
it was limited, it succeeded in demonstrating that time sharing was a con-

A.8

A.9

A9 IBM OS/360 13

venient and practical mode of computing. One result of CTSS was increased
development of time-sharing systems. Another result was the development of
MULTICS.

MULTICS

The MULTICS operating system was designed from 1965 to 1970 at MIT as a
natural extension of CTSS. CTSS and other early time-sharing systems were so
successful that they created an immediate desire to proceed quickly to bigger
and better systems. As larger computers became available, the designers of
CTSS set out to create a time-sharing utility. Computing service would be
provided like electrical power. Large computer systems would be connected
by telephone wires to terminals in offices and homes throughout a city. The
operating system would be a time-shared system running continuously with a
vast file system of shared programs and data.

MULTICS was designed by a team from MIT, GE (which later sold its com-
puter department to Honeywell), and Bell Laboratories (which dropped out of
the project in 1969). The basic GE 635 computer was modified to a new com-
puter system called the GE 645, mainly by the addition of paged-segmentation
memory hardware.

In MULTICS, a virtual address was composed of an 18-bit segment number
and a 16-bit word offset. The segments were then paged in 1-KB-word pages.
The second-chance page-replacement algorithm was used.

The segmented virtual address space was merged into the file system; each
segment was a file. Segments were addressed by the name of the file. The file
system itself was a multilevel tree structure, allowing users to create their own
subdirectory structures.

Like CTSS, MULTICS used a multilevel feedback queue for CPU scheduling.
Protection was accomplished through an access list associated with each file
and a set of protection rings for executing processes. The system, which was
written almost entirely in PL/1, comprised about 300,000 lines of code. It was
extended to a multiprocessor system, allowing a CPU to be taken out of service
for maintenance while the system continued running.

IBM OS/360

The longest line of operating-system development is undoubtedly that of IBM
computers. The early IBM computers, such as the IBM 7090 and the IBM 7094,
are prime examples of the development of common I/0 subroutines, followed
by development of a resident monitor, privileged instructions, memory protec-
tion, and simple batch processing. These systems were developed separately,
often at independent sites. As a result, IBM was faced with many different
computers, with different languages and different system software.

The 1BM/360—which first appeared in the mid 1960s—was designed to
alter this situation. The IBM/360 was designed as a family of computers span-
ning the complete range from small business machines to large scientific
machines. Only one set of software would be needed for these systems, which
all used the same operating system: OS/360. This arrangement was intended to

14

Appendix A Influential Operating Systems

reduce maintenance problems for IBM and to allow users to move programs
and applications freely from one IBM system to another.

Unfortunately, OS/360 tried to be all things to all people. As a result, it
did none of its tasks especially well. The file system included a type field
that defined the type of each file, and different file types were defined for
fixed-length and variable-length records and for blocked and unblocked files.
Contiguous allocation was used, so the user had to guess the size of each output
file. The Job Control Language (JCL) added parameters for every possible
option, making it incomprehensible to the average user.

The memory-management routines were hampered by the architecture.
Although a base-register addressing mode was used, the program could access
and modify the base register, so that absolute addresses were generated by the
CPU. This arrangement prevented dynamic relocation; the program was bound
to physical memory atload time. Two separate versions of the operating system
were produced: OS/MFT used fixed regions and OS/MVT used variable regions.

The system was written in assembly language by thousands of program-
mers, resulting in millions of lines of code. The operating system itself required
large amounts of memory for its code and tables. Operating-system overhead
often consumed one-half of the total CPU cycles. Over the years, new versions
were released to add new features and to fix errors. However, fixing one error
often caused another in some remote part of the system, so that the number of
known errors in the system remained fairly constant.

Virtual memory was added to 0S/360 with the change to the IBM/370
architecture. The underlying hardware provided a segmented-paged virtual
memory. New versions of OS used this hardware in different ways. OS/VS1
created one large virtual address space and ran OS/MFT in that virtual memory.
Thus, the operating system itself was paged, as well as user programs. OS/VS2
Release 1 ran OS/MVT in virtual memory. Finally, OS/VS2 Release 2, which is
now called MVS, provided each user with his own virtual memory.

MVS is still basically a batch operating system. The CTSS system was run on
an IBM 7094, but the developers at MIT decided that the address space of the
360, IBM’s successor to the 7094, was too small for MULTICS, so they switched
vendors. IBM then decided to create its own time-sharing system, TSS/360. Like
MULTICS, TSS/360 was supposed to be a large, time-shared utility. The basic 360
architecture was modified in the model 67 to provide virtual memory. Several
sites purchased the 360/67 in anticipation of TSS/360.

TSS/360 was delayed, however, so other time-sharing systems were devel-
oped as temporary systems until TSS/360 was available. A time-sharing option
(TSO) was added to 0S/360. IBM’s Cambridge Scientific Center developed CMS
as a single-user system and CP/67 to provide a virtual machine to run it on.

When TSS/360 was eventually delivered, it was a failure. It was too large
and too slow. As a result, no site would switch from its temporary system to
TSS/360. Today, time sharing on IBM systems is largely provided either by TSO
under MVS or by CMS under CP/67 (renamed VM).

Neither TSS/360 nor MULTICS achieved commercial success. What went
wrong? Part of the problem was that these advanced systems were too large
and too complex to be understood. Another problem was the assumption that
computing power would be available from a large, remote source. Minicom-

A11 CP/M and MS/DOS 15

puters came along and decreased the need for large monolithic systems. They
were followed by workstations and then personal computers, which put com-
puting power closer and closer to the end users.

A.10 TOPS-20

A.11

DEC created many influential computer systems during its history. Probably
the most famous operating system associated with DEC is VMS, a popular
business-oriented system that is still in use today as OpenVMS, a product of
Hewlett-Packard. But perhaps the most influential of DEC’s operating systems
was TOPS-20.

TOPS-20 started life as a research project at Bolt, Beranek, and Newman
(BBN) around 1970. BBN took the business-oriented DEC PDP-10 computer run-
ning TOPS-10, added a hardware memory-paging system to implement virtual
memory, and wrote a new operating system for that computer to take advan-
tage of the new hardware features. The result was TENEX, a general-purpose
time-sharing system. DEC then purchased the rights to TENEX and created a
new computer with a built-in hardware pager. The resulting system was the
DECSYSTEM-20 and the TOPS-20 operating system.

TOPS-20 had an advanced command-line interpreter that provided help as
needed to users. That, in combination with the power of the computer and
its reasonable price, made the DECSYSTEM-20 the most popular time-sharing
system of its time. In 1984, DEC stopped work on its line of 36-bit PDP-10
computers to concentrate on 32-bit VAX systems running VMS.

CP/M and MS/DOS

Early hobbyist computers were typically built from kits and ran a single pro-
gram at a time. The systems evolved into more advanced systems as computer
components improved. An early “standard” operating system for these com-
puters of the 1970s was CP/M, short for Control Program/Monitor, written by
Gary Kindall of Digital Research, Inc. CP/M ran primarily on the first “personal
computer” CPU, the 8-bit Intel 8080. CP/M originally supported only 64 KB of
memory and ran only one program at a time. Of course, it was text-based, with
a command interpreter. The command interpreter resembled those in other
operating systems of the time, such as the TOPS-10 from DEC.

When IBM entered the personal computer business, it decided to have Bill
Gates and company write a new operating system for its 16-bit CPU of choice
—the Intel 8086. This operating system, MS-DOS, was similar to CP/M but had
a richer set of built-in commands, again mostly modeled after TOPS-10. MS-DOS
became the most popular personal-computer operating system of its time,
starting in 1981 and continuing development until 2000. It supported 640 KB of
memory, with the ability to address “extended” and “expanded” memory to get
somewhat beyond that limit. It lacked fundamental current operating-system
features, however, especially protected memory.

16

Appendix A Influential Operating Systems

A.12 Macintosh Operating System and Windows

With the advent of 16-bit CPUs, operating systems for personal computers
could become more advanced, feature rich, and usable. The Apple Macintosh
computer was arguably the first computer with a GUI designed for home users.
It was certainly the most successful for a while, starting at its launch in 1984.
It used a mouse for screen pointing and selecting and came with many utility
programs that took advantage of the new user interface. Hard-disk drives were
relatively expensive in 1984, so it came only with a 400-KB-capacity floppy
drive by default.

The original Mac OS ran only on Apple computers and slowly was eclipsed
by Microsoft Windows (starting with Version 1.0 in 1985), which was licensed
to run on many different computers from a multitude of companies. As micro-
processor CPUs evolved to 32-bit chips with advanced features, such as pro-
tected memory and context switching, these operating systems added features
that had previously been found only on mainframes and minicomputers. Over
time, personal computers became as powerful as those systems and more use-
ful for many purposes. Minicomputers died out, replaced by general- and
special-purpose “servers.” Although personal computers continue to increase
in capacity and performance, servers tend to stay ahead of them in amount of
memory, disk space, and number and speed of available CPUs. Today, servers
typically run in data centers or machine rooms, while personal computers sit
on or next to desks and talk to each other and servers across a network.

The desktop rivalry between Apple and Microsoft continues today, with
new versions of Windows and Mac OS trying to outdo each other in fea-
tures, usability, and application functionality. Other operating systems, such
as AmigaOS and 0S/2, have appeared over time but have not been long-term
competitors to the two leading desktop operating systems. Meanwhile, Linux
in its many forms continues to gain in popularity among more technical users
—and even with nontechnical users on systems like the One Laptop per Child
(OLPC) children’s connected computer network (http://laptop.org/).

A.13 Mach

The Mach operating system traces its ancestry to the Accent operating sys-
tem developed at Carnegie Mellon University (CMU). Mach’s communication
system and philosophy are derived from Accent, but many other significant
portions of the system (for example, the virtual memory system and task and
thread management) were developed from scratch.

Work on Mach began in the mid 1980. The operating system was designed
with the following three critical goals in mind:

1. Emulate 4.3 BSD UNIX so that the executable files from a UNIX system can
run correctly under Mach.

2. Be a modern operating system that supports many memory models, as
well as parallel and distributed computing.

3. Have a kernel that is simpler and easier to modify than 4.3 BSD.

http://laptop.org/

A.13 Mach 17

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems. Mach code was initially developed inside the 4.2 BSD kernel, with BSD ker-
nel components replaced by Mach components as the Mach components were
completed. The BSD components were updated to 4.3 BSD when that became
available. By 1986, the virtual memory and communication subsystems were
running on the DEC VAX computer family, including multiprocessor versions
of the VAX. Versions for the IBM RT/PC and for SUN 3 workstations followed
shortly. Then, 1987 saw the completion of the Encore Multimax and Sequent
Balance multiprocessor versions, including task and thread support, as well as
the first official releases of the system, Release 0 and Release 1.

Through Release 2, Mach provided compatibility with the corresponding
BSD systems by including much of BSD’s code in the kernel. The new features
and capabilities of Mach made the kernels in these releases larger than the cor-
responding BSD kernels. Mach 3 moved the BSD code outside the kernel, leaving
a much smaller microkernel. This system implements only basic Mach fea-
tures in the kernel; all UNIX-specific code has been evicted to run in user-mode
servers. Excluding UNIX-specific code from the kernel allows the replacement
of BSD with another operating system or the simultaneous execution of multi-
ple operating-system interfaces on top of the microkernel. In addition to BSD,
user-mode implementations have been developed for DOS, the Macintosh oper-
ating system, and OSF/1. This approach has similarities to the virtual machine
concept, but here the virtual machine is defined by software (the Mach kernel
interface), rather than by hardware. With Release 3.0, Mach became available
on a wide variety of systems, including single-processor SUN, Intel, IBM, and
DEC machines and multiprocessor DEC, Sequent, and Encore systems.

Mach was propelled to the forefront of industry attention when the Open
Software Foundation (OSF) announced in 1989 that it would use Mach 2.5 as
the basis for its new operating system, OSF/1. (Mach 2.5 was also the basis for
the operating system on the NeXT workstation, the brainchild of Steve Jobs of
Apple Computer fame.) The initial release of OSF/1 occurred a year later, and
this system competed with UNIX System V, Release 4, the operating system
of choice at that time among UNIX International (UI) members. OSF members
included key technological companies such as IBM, DEC, and HP. OSF has since
changed its direction, and only DEC UNIX is based on the Mach kernel.

Unlike UNIX, which was developed without regard for multiprocessing,
Mach incorporates multiprocessing support throughout. This support is also
exceedingly flexible, ranging from shared-memory systems to systems with no
memory shared between processors. Mach uses lightweight processes, in the
form of multiple threads of execution within one task (or address space), to
support multiprocessing and parallel computation. Its extensive use of mes-
sages as the only communication method ensures that protection mechanisms
are complete and efficient. By integrating messages with the virtual memory
system, Mach also ensures that messages can be handled efficiently. Finally, by
having the virtual memory system use messages to communicate with the dae-
mons managing the backing store, Mach provides great flexibility in the design
and implementation of these memory-object-managing tasks. By providing
low-level, or primitive, system calls from which more complex functions can
be built, Mach reduces the size of the kernel while permitting operating-system
emulation at the user level, much like IBM’s virtual machine systems.

18 Appendix A Influential Operating Systems

Today, the only remaining pure Mach implementation is in GNU HURD, a
little-used operating system. Mach still lives on, however, in XNU—the kernel
driving macOSand the iOSvariants. XNU—whose codebase Apple obtained
with the acquisition of NeXT and its NeXTSTEP operating system—is a Mach
core with a top layer of BSD APIs. Apple continues to support and maintain the
Mach APIs (still accessible through specialized system calls known as traps,
and via Mach Messages), and the kernel continues evolving with new features
to this day.

Some previous editions of Operating System Concepts included an entire
chapter on Mach. This chapter, as it appeared in the fourth edition, is available
on the web (http://www.os-book.com).

A.14 Capability-based Systems—Hydra and CAP

In this section, we survey two capability-based protection systems. These sys-
tems differ in their complexity and in the types of policies that can be imple-
mented on them. Neither system is widely used, but both provide interesting
proving grounds for protection theories.

A.14.1 Hydra

Hydra is a capability-based protection system that provides considerable flex-
ibility. The system implements a fixed set of possible access rights, including
such basic forms of access as the right to read, write, or execute a memory seg-
ment. In addition, a user (of the protection system) can declare other rights. The
interpretation of user-defined rights is performed solely by the user’s program,
but the system provides access protection for the use of these rights, as well
as for the use of system-defined rights. These facilities constitute a significant
development in protection technology.

Operations on objects are defined procedurally. The procedures that imple-
ment such operations are themselves a form of object, and they are accessed
indirectly by capabilities. The names of user-defined procedures must be iden-
tified to the protection system if it is to deal with objects of the user-defined
type. When the definition of an object is made known to Hydra, the names
of operations on the type become auxiliary rights. Auxiliary rights can be
described in a capability for an instance of the type. For a process to perform
an operation on a typed object, the capability it holds for that object must con-
tain the name of the operation being invoked among its auxiliary rights. This
restriction enables discrimination of access rights to be made on an instance-
by-instance and process-by-process basis.

Hydra also provides rights amplification. This scheme allows a procedure
to be certified as trustworthy to act on a formal parameter of a specified type
on behalf of any process that holds a right to execute the procedure. The rights
held by a trustworthy procedure are independent of, and may exceed, the
rights held by the calling process. However, such a procedure must not be
regarded as universally trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness must not be extended to any
other procedures or program segments that might be executed by a process.

http://www.os-book.com

A.14 Capability-based Systems—Hydra and CAP 19

Amplification allows implementation procedures access to the representa-
tion variables of an abstract data type. If a process holds a capability to a typed
object A, for instance, this capability may include an auxiliary right to invoke
some operation P but does not include any of the so-called kernel rights, such
as read, write, or execute, on the segment that represents A. Such a capability
gives a process a means of indirect access (through the operation P) to the
representation of A, but only for specific purposes.

When a process invokes the operation P on an object A, however, the
capability for access to A may be amplified as control passes to the code body
of P. This amplification may be necessary to allow P the right to access the
storage segment representing A so as to implement the operation that P defines
on the abstract data type. The code body of P may be allowed to read or to
write to the segment of A directly, even though the calling process cannot.
On return from P, the capability for A is restored to its original, unamplified
state. This case is a typical one in which the rights held by a process for access
to a protected segment must change dynamically, depending on the task to
be performed. The dynamic adjustment of rights is performed to guarantee
consistency of a programmer-defined abstraction. Amplification of rights can
be stated explicitly in the declaration of an abstract type to the Hydra operating
system.

When a user passes an object as an argument to a procedure, we may need
to ensure that the procedure cannot modify the object. We can implement this
restriction readily by passing an access right that does not have the modifi-
cation (write) right. However, if amplification may occur, the right to modify
may be reinstated. Thus, the user-protection requirement can be circumvented.
In general, of course, a user may trust that a procedure performs its task cor-
rectly. This assumption is not always correct, however, because of hardware or
software errors. Hydra solves this problem by restricting amplifications.

The procedure-call mechanism of Hydra was designed as a direct solution
to the problem of mutually suspicious subsystems. This problem is defined as
follows. Suppose that a program can be invoked as a service by a number of
different users (for example, a sort routine, a compiler, a game). When users
invoke this service program, they take the risk that the program will malfunc-
tion and will either damage the given data or retain some access right to the
data to be used (without authority) later. Similarly, the service program may
have some private files (for accounting purposes, for example) that should not
be accessed directly by the calling user program. Hydra provides mechanisms
for directly dealing with this problem.

A Hydra subsystem is built on top of its protection kernel and may require
protection of its own components. A subsystem interacts with the kernel
through calls on a set of kernel-defined primitives that define access rights to
resources defined by the subsystem. The subsystem designer can define poli-
cies for use of these resources by user processes, but the policies are enforced
by use of the standard access protection provided by the capability system.

Programmers can make direct use of the protection system after acquaint-
ing themselves with its features in the appropriate reference manual. Hydra
provides a large library of system-defined procedures that can be called by
user programs. Programmers can explicitly incorporate calls on these system
procedures into their program code or can use a program translator that has
been interfaced to Hydra.

20 Appendix A Influential Operating Systems

A.14.2 Cambridge CAP System

A different approach to capability-based protection has been taken in the
design of the Cambridge CAP system. CAP’s capability system is simpler and
superficially less powerful than that of Hydra. However, closer examination
shows that it, too, can be used to provide secure protection of user-defined
objects. CAP has two kinds of capabilities. The ordinary kind is called a data
capability. It can be used to provide access to objects, but the only rights pro-
vided are the standard read, write, and execute of the individual storage seg-
ments associated with the object. Data capabilities are interpreted by microcode
in the CAP machine.

The second kind of capability is the so-called software capability, which is
protected, but not interpreted, by the CAP microcode. It is interpreted by a pro-
tected (that is, privileged) procedure, which may be written by an application
programmer as part of a subsystem. A particular kind of rights amplification
is associated with a protected procedure. When executing the code body of
such a procedure, a process temporarily acquires the right to read or write the
contents of a software capability itself. This specific kind of rights amplifica-
tion corresponds to an implementation of the seal and unseal primitives on
capabilities. Of course, this privilege is still subject to type verification to ensure
that only software capabilities for a specified abstract type are passed to any
such procedure. Universal trust is not placed in any code other than the CAP
machine’s microcode. (See the bibliographical notes at the end of the chapter
for references.)

The interpretation of a software capability is left completely to the sub-
system, through the protected procedures it contains. This scheme allows a
variety of protection policies to be implemented. Although programmers can
define their own protected procedures (any of which might be incorrect), the
security of the overall system cannot be compromised. The basic protection
system will not allow an unverified, user-defined, protected procedure access
to any storage segments (or capabilities) that do not belong to the protection
environment in which it resides. The most serious consequence of an insecure
protected procedure is a protection breakdown of the subsystem for which that
procedure has responsibility.

The designers of the CAP system have noted that the use of software
capabilities allowed them to realize considerable economies in formulating
and implementing protection policies commensurate with the requirements of
abstract resources. However, subsystem designers who want to make use of
this facility cannot simply study a reference manual, as is the case with Hydra.
Instead, they must learn the principles and techniques of protection, since the
system provides them with no library of procedures.

A.15 Other Systems

There are, of course, other operating systems, and most of them have interest-
ing properties. The MCP operating system for the Burroughs computer family
was the first to be written in a system programming language. It supported
segmentation and multiple CPUs. The SCOPE operating system for the CDC
6600 was also a multi-CPU system. The coordination and synchronization of
the multiple processes were surprisingly well designed.

Bibliography 21

History is littered with operating systems that suited a purpose for a time
(be it a long or a short time) and then, when faded, were replaced by operating
systems that had more features, supported newer hardware, were easier to use,
or were better marketed. We are sure this trend will continue in the future.

Further Reading

Looms and calculators are described in [Frah (2001)] and shown graphically in
[Frauenfelder (2005)].

The Manchester Mark 1 is discussed by [Rojas and Hashagen (2000)], and
its offspring, the Ferranti Mark 1, is described by [Ceruzzi (1998)].

[Kilburn et al. (1961)] and [Howarth et al. (1961)] examine the Atlas oper-
ating system.

The XDS-940 operating system is described by [Lichtenberger and Pirtle
(1965)].

The THE operating system is covered by [Dijkstra (1968)] and by [McKeag
and Wilson (1976)].

The Venus system is described by [Liskov (1972)].

[Brinch-Hansen (1970)] and [Brinch-Hansen (1973)] discuss the RC 4000
system.

The Compatible Time-Sharing System (CTSS) is presented by [Corbato et al.
(1962)].

The MULTICS operating system is described by [Corbato and Vyssotsky
(1965)] and [Organick (1972)].

[Mealy et al. (1966)] presented the IBM/360. [Lett and Konigsford (1968)]
cover TSS/360.

CP/67 is described by [Meyer and Seawright (1970)] and [Parmelee et al.
(1972)].

DEC VMS is discussed by [Kenah et al. (1988)], and TENEX is described by
[Bobrow et al. (1972)].

A description of the Apple Macintosh appears in [Apple (1987)]. For more
information on these operating systems and their history, see [Freiberger and
Swaine (2000)].

The Mach operating system and its ancestor, the Accent operating system,
are described by [Rashid and Robertson (1981)]. Mach’s communication
system is covered by [Rashid (1986)], [Tevanian et al. (1989)], and [Accetta
et al. (1986)]. The Mach scheduler is described in detail by [Tevanian
et al. (1987a)] and [Black (1990)]. An early version of the Mach shared-
memory and memory-mapping system is presented by [Tevanian et al.
(1987b)]. A good resource describing the Mach project can be found at
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

[McKeag and Wilson (1976)] discuss the MCP operating system for the
Burroughs computer family as well as the SCOPE operating system for the CDC
6600.

The Hydra system was described by [Wulf et al. (1981)]. The CAP system
was described by [Needham and Walker (1977)]. [Organick (1972)] discussed
the MULTICS ring-protection system.

http://scholar.google.com/scholar?hl/en&q=Georges Frah The Universal History of Computing
http://scholar.google.com/scholar?hl/en&q=Mark Frauenfelder The ComputerAn Illustrated History
http://scholar.google.com/scholar?hl/en&q=Raul Rojas and Ulf Hashagen The First ComputersHistory and Architectures
http://scholar.google.com/scholar?hl/en&q=Paul E Ceruzzi A History of Modern Computing
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://doi.acm.org/10.1145/1463891.1463955
http://doi.acm.org/10.1145/363095.363143
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://doi.acm.org/10.1145/361268.361272
http://doi.acm.org/10.1145/362258.362278
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://doi.acm.org/10.1145/1460833.1460871
http://doi.acm.org/10.1145/1463891.1463912
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://dx.doi.org/10.1147/sj.51.0003
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1968.175
http://dx.doi.org/10.1147/sj.93.0199
http://dx.doi.org/10.1147/sj.112.0099
http://scholar.google.com/scholar?hl/en&q=L J Kenah and R E Goldenberg and S F Bate VAXVMS Internals and Data Structures
http://doi.acm.org/10.1145/361268.361271
http://scholar.google.com/scholar?hl/en&q= Apple Technical Introduction to the Macintosh Family
http://scholar.google.com/scholar?hl/en&q=Paul Freiberger and Michael Swaine Fire in the ValleyThe Making of the Personal Computer
http://doi.acm.org/10.1145/800216.806593
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?doid=30401.30404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://www.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://scholar.google.com/scholar?hl/en&q=W A Wulf and R Levin and S P Harbison HydraCmmp An Experimental Computer System
http://doi.acm.org/10.1145/800214.806541
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure

22 Appendix A Influential Operating Systems

Bibliography

[Accetta et al. (1986)] M. Accetta, R. Baron, W. Bolosky, D. B. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: A New Kernel Foundation for UNIX Devel-
opment”, Proceedings of the Summer USENIX Conference (1986), pages 93-112.

[Apple (1987)] Apple Technical Introduction to the Macintosh Family. Addison-
Wesley (1987).

[Black (1990)] D. L. Black, “Scheduling Support for Concurrency and Paral-
lelism in the Mach Operating System”, IEEE Computer, Volume 23, Number 5
(1990), pages 35-43.

[Bobrow et al. (1972)] D.G.Bobrow,]. D. Burchfiel, D. L. Murphy, and R. S. Tom-
linson, “TENEX, a Paged Time Sharing System for the PDP-10", Communications
of the ACM, Volume 15, Number 3 (1972).

[Brinch-Hansen (1970)] P. Brinch-Hansen, “The Nucleus of a Multiprogram-
ming System”, Communications of the ACM, Volume 13, Number 4 (1970), pages
238-241 and 250.

[Brinch-Hansen (1973)] P. Brinch-Hansen, Operating System Principles, Prentice
Hall (1973).

[Ceruzzi (1998)] P. E. Ceruzzi, A History of Modern Computing, MIT Press (1998).

[Corbato and Vyssotsky (1965)] F.]J. Corbato and V. A. Vyssotsky, “Introduction
and Overview of the MULTICS System”, Proceedings of the AFIPS Fall Joint
Computer Conference (1965), pages 185-196.

[Corbato et al. (1962)] F. J. Corbato, M. Merwin-Daggett, and R. C. Daley, “An
Experimental Time-Sharing System”, Proceedings of the AFIPS Fall Joint Computer
Conference (1962), pages 335-344.

[Dijkstra (1968)] E. W. Dijkstra, “The Structure of the THE Multiprogramming
System”, Communications of the ACM, Volume 11, Number 5 (1968), pages 341-
346.

[Frah (2001)] G. Frah, The Universal History of Computing, John Wiley and Sons
(2001).

[Frauenfelder (2005)] M. Frauenfelder, The Computer—An Illustrated History,
Carlton Books (2005).

[Freiberger and Swaine (2000)] P. Freiberger and M. Swaine, Fire in the Valley—
The Making of the Personal Computer, McGraw-Hill (2000).

[Howarth et al. (1961)] D. J. Howarth, R. B. Payne, and F. H. Sumner, “The
Manchester University Atlas Operating System, Part II: User’s Description”,
Computer Journal, Volume 4, Number 3 (1961), pages 226-229.

[Kenah et al. (1988)] L. J. Kenah, R. E. Goldenberg, and S. F. Bate, VAX/VMS
Internals and Data Structures, Digital Press (1988).

[Kilburn et al. (1961)] T. Kilburn, D.]. Howarth, R. B. Payne, and F. H. Sumner,
“The Manchester University Atlas Operating System, Part I: Internal Organiza-
tion”, Computer Journal, Volume 4, Number 3 (1961), pages 222-225.

http://dl.acm.org/citation.cfm?doid=30401.30404
http://dl.acm.org/citation.cfm?doid=30401.30404
http://scholar.google.com/scholar?hl/en&q= Apple Technical Introduction to the Macintosh Family
http://scholar.google.com/scholar?hl/en&q= Apple Technical Introduction to the Macintosh Family
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://doi.ieeecomputersociety.org/10.1109/2.53353
http://doi.acm.org/10.1145/361268.361271
http://doi.acm.org/10.1145/361268.361271
http://doi.acm.org/10.1145/362258.362278
http://doi.acm.org/10.1145/362258.362278
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://scholar.google.com/scholar?hl/en&q=P Brinch Hansen Operating System Principles
http://scholar.google.com/scholar?hl/en&q=Paul E Ceruzzi A History of Modern Computing
http://scholar.google.com/scholar?hl/en&q=Paul E Ceruzzi A History of Modern Computing
http://doi.acm.org/10.1145/1463891.1463912
http://doi.acm.org/10.1145/1463891.1463912
http://doi.acm.org/10.1145/1460833.1460871
http://doi.acm.org/10.1145/1460833.1460871
http://doi.acm.org/10.1145/363095.363143
http://doi.acm.org/10.1145/363095.363143
http://scholar.google.com/scholar?hl/en&q=Georges Frah The Universal History of Computing
http://scholar.google.com/scholar?hl/en&q=Georges Frah The Universal History of Computing
http://scholar.google.com/scholar?hl/en&q=Mark Frauenfelder The ComputerAn Illustrated History
http://scholar.google.com/scholar?hl/en&q=Mark Frauenfelder The ComputerAn Illustrated History
http://scholar.google.com/scholar?hl/en&q=Paul Freiberger and Michael Swaine Fire in the ValleyThe Making of the Personal Computer
http://scholar.google.com/scholar?hl/en&q=Paul Freiberger and Michael Swaine Fire in the ValleyThe Making of the Personal Computer
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://comjnl.oxfordjournals.org/content/4/3/226.full.pdf+html
http://scholar.google.com/scholar?hl/en&q=L J Kenah and R E Goldenberg and S F Bate VAXVMS Internals and Data Structures
http://scholar.google.com/scholar?hl/en&q=L J Kenah and R E Goldenberg and S F Bate VAXVMS Internals and Data Structures
http://comjnl.oxfordjournals.org/content/4/3/222.abstract
http://comjnl.oxfordjournals.org/content/4/3/222.abstract

Bibliography 23

[Lett and Konigsford (1968)] A. L. Lett and W. L. Konigsford, “TSS5/360: A
Time-Shared Operating System”, Proceedings of the AFIPS Fall Joint Computer
Conference (1968), pages 15-28.

[Lichtenberger and Pirtle (1965)] W. W. Lichtenberger and M. W. Pirtle, “A
Facility for Experimentation in Man-Machine Interaction”, Proceedings of the
AFIPS Fall Joint Computer Conference (1965), pages 589-598.

[Liskov (1972)] B.H. Liskov, “The Design of the Venus Operating System”, Com-
munications of the ACM, Volume 15, Number 3 (1972), pages 144-149.

[McKeag and Wilson (1976)] R. M. McKeag and R. Wilson, Studies in Operating
Systems, Academic Press (1976).

[Mealy et al. (1966)] G. H. Mealy, B. I. Witt, and W. A. Clark, “The Functional
Structure of OS/360”, IBM Systems Journal, Volume 5, Number 1 (1966), pages
3-11.

[Meyer and Seawright (1970)] R. A. Meyer and L. H. Seawright, “A Virtual
Machine Time-Sharing System”, IBM Systems Journal, Volume 9, Number 3
(1970), pages 199-218.

[Needham and Walker (1977)] R. M. Needham and R. D. H. Walker, “The Cam-
bridge CAP Computer and Its Protection System”, Proceedings of the Sixth Sym-
posium on Operating System Principles (1977), pages 1-10.

[Organick (1972)] E.I Organick, The Multics System: An Examination of Its Struc-
ture, MIT Press (1972).

[Parmelee et al. (1972)] R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. Hat-
field, “Virtual Storage and Virtual Machine Concepts”, IBM Systems Journal,
Volume 11, Number 2 (1972), pages 99-130.

[Rashid (1986)] R. F. Rashid, “From RIG to Accent to Mach: The Evolution of a
Network Operating System”, Proceedings of the ACM/IEEE Computer Society, Fall
Joint Computer Conference (1986), pages 1128-1137.

[Rashid and Robertson (1981)] R. Rashid and G. Robertson, “Accent: A Com-
munication-Oriented Network Operating System Kernel”, Proceedings of the
ACM Symposium on Operating System Principles (1981), pages 64-75.

[Rojas and Hashagen (2000)] R. Rojas and U. Hashagen, The First Computers—
History and Architectures, MIT Press (2000).

[Tevanian et al. (1987a)] A. Tevanian, Jr., R. FE. Rashid, D. B. Golub, D. L. Black,
E. Cooper, and M. W. Young, “Mach Threads and the Unix Kernel: The Battle for
Control”, Proceedings of the Summer USENIX Conference (1987).

[Tevanian et al. (1987b)] A.Tevanian, Jr., R. F. Rashid, M. W. Young, D. B. Golub,
M. R. Thompson, W. Bolosky, and R. Sanzi, “A UNIX Interface for Shared
Memory and Memory Mapped Files Under Mach”, Technical report, Carnegie-
Mellon University (1987).

[Tevanian et al. (1989)] A. Tevanian, Jr.,, and B. Smith, “Mach: The Model for
Future Unix”, Byte (1989).

http://doi.ieeecomputersociety.org/10.1109/AFIPS.1968.175
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1968.175
http://doi.acm.org/10.1145/1463891.1463955
http://doi.acm.org/10.1145/1463891.1463955
http://doi.acm.org/10.1145/361268.361272
http://doi.acm.org/10.1145/361268.361272
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://scholar.google.com/scholar?hl/en&q=R M McKeag and R Wilson Studies in Operating Systems
http://dx.doi.org/10.1147/sj.51.0003
http://dx.doi.org/10.1147/sj.51.0003
http://dx.doi.org/10.1147/sj.93.0199
http://dx.doi.org/10.1147/sj.93.0199
http://doi.acm.org/10.1145/800214.806541
http://doi.acm.org/10.1145/800214.806541
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://scholar.google.com/scholar?hl/en&q=E I Organick The Multics System An Examination of Its Structure
http://dx.doi.org/10.1147/sj.112.0099
http://dx.doi.org/10.1147/sj.112.0099
http://dl.acm.org/citation.cfm?id=324493.325071
http://dl.acm.org/citation.cfm?id=324493.325071
http://doi.acm.org/10.1145/800216.806593
http://doi.acm.org/10.1145/800216.806593
http://scholar.google.com/scholar?hl/en&q=Raul Rojas and Ulf Hashagen The First ComputersHistory and Architectures
http://scholar.google.com/scholar?hl/en&q=Raul Rojas and Ulf Hashagen The First ComputersHistory and Architectures
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3458
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://scholar.google.com/scholar?hl/en&q=A Tevanian and Jr and R F Rashid and M W Young and D B Golub and M R Thompson and W Bolosky and R Sanzi A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach
http://dl.acm.org/citation.cfm?id=77139.77171
http://dl.acm.org/citation.cfm?id=77139.77171

24 Appendix A Influential Operating Systems

[Wulf et al. (1981)] W. A. Wulf, R. Levin, and S. P. Harbison, Hydra/C.mmp: An
Experimental Computer System, McGraw-Hill (1981).

http://scholar.google.com/scholar?hl/en&q=W A Wulf and R Levin and S P Harbison HydraCmmp An Experimental Computer System
http://scholar.google.com/scholar?hl/en&q=W A Wulf and R Levin and S P Harbison HydraCmmp An Experimental Computer System

	CPU Scheduling
	Basic Concepts
	Scheduling Criteria
	Scheduling Algorithms
	Thread Scheduling
	Multi-Processor Scheduling
	Real-Time CPU Scheduling
	Operating-System Examples
	Algorithm Evaluation
	Summary
	Exercises
	Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

