
The Java Desktop Integration Components (JDIC) are part of an open-source project
aimed at allowing better integration between Java applications and the platforms on which
they execute. Some JDIC features include:

• interacting with the underlying platform to launch native applications (such as
web browsers and e-mail clients)

• displaying a splash screen when an application begins execution to indicate to the
user that the application is loading

• creating icons in the system tray (also called the taskbar status area or notification
area) to provide access to Java applications running in the background

• registering file-type associations, so that files of specified types will automatically
open in corresponding Java applications

• creating installer packages, and more.

The JDIC homepage (jdic.dev.java.net/) includes an introduction to JDIC,
downloads, documentation, FAQs, demos, articles, blogs, announcements, incubator
projects, a developer’s page, forums, mailing lists, and more. Java SE 6 includes some of
the features mentioned above. We discuss several of these features here.

Java application users often perceive a performance problem, because nothing appears on
the screen when you first launch an application. One way to show a user that your program
is loading is to display a splash screen—a borderless window that appears temporarily

J.1 Introduction

J.2 Splash Screens

©2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material
is protected under all copyright laws as they currently exist. No portion of this material may
be reproduced in any form or by any means, without permission in writing from the publisher.
For the exclusive use of adopters of the book, Java (TM) How to Program, 8th Edition, by
Deitel and Deitel. ISBN 0-13-605306-8.

J.2 Splash Screens XXVII

while an application loads. Java SE 6 provides the new command-line option -splash for
the java command to accomplish this task. This option enables you to specify a PNG,
GIF or JPG image that should display when your application begins loading. To demon-
strate this new option, we created a program (Fig. J.1) that sleeps for 5 seconds (so you can
view the splash screen) then displays a message at the command line. The directory for this
example includes a PNG format image to use as the splash screen. To display the splash
screen when this application loads, use the command

java -splash:DeitelBug.png SplashDemo

1 // Fig. J.1: SplashDemo.java
2 // Splash screen demonstration.
3 public class SplashDemo
4 {
5 public static void main(String[] args)
6 {
7 try
8 {
9 Thread.sleep(5000);

10 } // end try
11 catch (InterruptedException e)
12 {
13 e.printStackTrace();
14 } // end catch
15
16 System.out.println(
17 "This was the splash screen demo.");
18 } // end method main
19 } // end class SplashDemo

Fig. J.1 | Splash screen displayed with the -splash option to the java command.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

XXVIII Appendix J Java Desktop Integration Components (JDIC)

Once you’ve initiated the splash screen display, you can interact with it programmat-
ically via the SplashScreen class of the java.awt package. You might do this to add some
dynamic content to the splash screen. For more information on working with splash
screens, see the following sites:

Java SE 6’s new Desktop class enables you to specify a file or URI that you’d like to open
using the underlying platform’s appropriate application. For example, if Firefox is your
computer’s default browser, you can use the Desktop class’s browse method to open a web-
site in Firefox. In addition, you can open an e-mail composition window in your system’s
default e-mail client, open a file in its associated application and print a file using the as-
sociated application’s print command. Figure J.2 demonstrates the first three of these ca-
pabilities.

The event handler at lines 86–116 obtains the index number of the task the user
selects in the tasksJComboBox (line 89) and the String that represents the file or URI to
process (line 90). Line 92 uses Desktop static method isDesktopSupported to deter-
mine whether class Desktop’s features are supported on the platform on which this appli-
cation runs. If they are, line 96 uses Desktop static method getDesktop, to obtain a
Desktop object. If the user selected the option to open the default browser, line 101 creates
a new URI object using the String input as the site to display in the browser, then passes
the URI object to Desktop method browse which invokes the system’s default browser and
passes the URI to the browser for display. If the user selects the option to open a file in its
associated program, line 104 creates a new File object using the String input as the file
to open, then passes the File object to Desktop method open which passes the file to the
appropriate application to open the file. Finally, if the user selects the option to compose
an e-mail, line 107 creates a new URI object using the String input as the e-mail address
to which the e-mail will be sent, then passes the URI object to Desktop method mail which
invokes the system’s default e-mail client and passes the URI to the e-mail client as the e-
mail recipient. You can learn more about class Desktop at

java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/
 splashscreen/
java.sun.com/javase/6/docs/api/java/awt/SplashScreen.html

java.sun.com/javase/6/docs/api/java/awt/Desktop.html

1 // Fig. J.2: DesktopDemo.java
2 // Use Desktop to launch default browser, open a file in its associated
3 // application and an email in the default email client.
4 import java.awt.Desktop;
5 import java.io.File;
6 import java.io.IOException;
7 import java.net.URI;
8
9 public class DesktopDemo extends javax.swing.JFrame

10 {

Fig. J.2 | Use Desktop to launch the default browser, open a file in its associated application
and compose an e-mail in the default e-mail client. (Part 1 of 3.)

J.3 Desktop Class

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

J.3 Desktop Class XXIX

11 // constructor
12 public DesktopDemo()
13 {
14 initComponents();
15 } // end DesktopDemo constructor
16
17
18
19
20
85 // determine selected task and perform the task
86 private void doTaskJButtonActionPerformed(
87 java.awt.event.ActionEvent evt)
88 {
89 int index = tasksJComboBox.getSelectedIndex();
90 String input = inputJTextField.getText();
91
92 if ()
93 {
94 try
95 {
96
97
98 switch (index)
99 {
100 case 0: // open browser
101
102 break;
103 case 1: // open file
104
105 break;
106 case 2: // open email composition window
107
108 break;
109 } // end switch
110 } // end try
111 catch (Exception e)
112 {
113 e.printStackTrace();
114 } // end catch
115 } // end if
116 } // end method doTaskJButtonActionPerformed
117
118 public static void main(String[] args)
119 {
120 java.awt.EventQueue.invokeLater(
121 new Runnable()
122 {
123 public void run()
124 {
125 new DesktopDemo().setVisible(true);
126 }

Fig. J.2 | Use Desktop to launch the default browser, open a file in its associated application
and compose an e-mail in the default e-mail client. (Part 2 of 3.)

// To save space, lines 20-84 of the NetBeans autogenerated GUI code
// are not shown here. The complete code for this example is located in
// the file DesktopDemo.java in this example's directory.

Desktop.isDesktopSupported()

Desktop desktop = Desktop.getDesktop();

desktop.browse(new URI(input));

desktop.open(new File(input));

desktop.mail(new URI(input));

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

XXX Appendix J Java Desktop Integration Components (JDIC)

Tray icons generally appear in your system’s system tray, taskbar status area or notification
area. They typically provide quick access to applications that are executing in the back-
ground on your system. When you position the mouse over one of these icons, a tooltip
appears indicating what application the icon represents. If you click the icon, a popup
menu appears with options for that application.

127 }
128);
129 } // end method main
130
131 // Variables declaration - do not modify
132 private javax.swing.JButton doTaskJButton;
133 private javax.swing.JLabel inputJLabel;
134 private javax.swing.JTextField inputJTextField;
135 private javax.swing.JLabel instructionLabel;
136 private javax.swing.JComboBox tasksJComboBox;
137 // End of variables declaration
138 }

Fig. J.2 | Use Desktop to launch the default browser, open a file in its associated application
and compose an e-mail in the default e-mail client. (Part 3 of 3.)

J.4 Tray Icons

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

J.5 JDIC Incubator Projects XXXI

Classes SystemTray and TrayIcon (both from package java.awt) enable you to create
and manage your own tray icons in a platform independent manner. Class SystemTray
provides access to the underlying platform’s system tray—the class consists of three
methods:

• static method getDefaultSystemTray returns the system tray

• method addTrayIcon adds a new TrayIcon to the system tray

• method removeTrayIcon removes an icon from the system tray

Class TrayIcon consists of several methods allowing users to specify an icon, a tooltip
and a pop-up menu for the icon. In addition, tray icons support ActionListeners,
MouseListeners and MouseMotionListeners. You can learn more about classes System-
Tray and TrayIcon at

The JDIC Incubator Projects are developed, maintained and owned by members of the
Java community. These projects are associated with, but not distributed with, JDIC. The
Incubator Projects may eventually become part of the JDIC project once they have been
fully developed and meet certain criteria. For more information about the Incubator Proj-
ects and to learn how you can setup an Incubator Project, visit

jdic.dev.java.net/#incubator

The JDIC site includes demos for FileExplorer, the browser package, the TrayIcon pack-
age, the Floating Dock class and the Wallpaper API (jdic.dev.java.net/#demos). The
source code for these demos is included in the JDIC download (jdic.dev.java.net/
servlets/ProjectDocumentList). For more demos, check out some of the incubator
projects.

java.sun.com/javase/6/docs/api/java/awt/SystemTray.html
java.sun.com/javase/6/docs/api/java/awt/TrayIcon.html

J.5 JDIC Incubator Projects

J.6 JDIC Demos

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved.

