
D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

1

APPENDIX

Solutions

Appendix.indd 1 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

Chapter 1
 S.1.1
Data independence means that database application programs are not dependent on
the physical structure of the stored data in a database (physical data independence)
and that database application programs are independent of the logical structure of the
database (logical data independence).

 S.1.2
The main concept of the relational model is a relation, i.e., a table. The whole relational
model consists of only tables with one or more columns and zero or more rows. At every
position in the table there is only one data value.

 S.1.3
The table employee represents an entity, while the data for Ann Jones specifies an
object, i.e., an instance of the entity.

 S.1.4
The works_on table represents the relationship between employees and projects. The
difference between the works_on table and the other tables of the sample database is
that the works_on table shows the relationship between two entities, while each of the
other tables represents an entity.

 S.1.5
 A) Yes, because it is unique.
 B) Yes, because each title uniquely determines the corresponding isbn.
 C) Yes (there are no dependencies between the non-key attributes, because

there is just one attribute).

 S.1.6
 A) Yes, because all other columns are dependent on this one.
 B) No, because of the functional dependency on the column order_no.

 S.1.7
The company table is not in any normal form, because the column Location is
multivalued.

Appendix.indd 2 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 3

 S.1.8
 A) 1NF, because the column city is functionally dependent on the column

supplier_no, which is the partial key of the table.
 B) Using the following two tables:
 supplier1 (supplier_no, article)
 supplier2 (supplier_no, city)

 S.1.9
1NF, because the column C is dependent on the column B, which is the partial key
of the table.

 S.1.10
This table is in 3NF, but its design is not well done. (The primary key should be the
combination of the columns A and C.)

Chapter 2
 S.2.1
Right-click the Databases folder and select New Database. Enter test in the field
Name, enter the value 2 in the field File growth – In megabytes and 20 in the field
Maximum file size – Restrict filegrowth (MB). In the Location column change the
path to C:\tmp. Do the same for the Initial size column to change it to10MB. Then
click OK.

 S.2.2
Select the test database inside the folder Databases of your SQL Server. Right-click
it, select Properties, and choose the Transaction Log tab. Proceed with changing
the values similar to exercise 2.1.

 S.2.3
In the Properties dialog box of the test database choose the tab Options and select
DBO use only. Several DBOs can use the database if the option Single User is not
activated.

 S.2.4
Right-click the folder Tables inside the test database. Select New Table and enter
the name of the first table (department). Then enter the column names with the
corresponding data types. Proceed in the same way with all four tables.

Appendix.indd 3 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.2.5
Click the database AdventureWorks in the folder Databases and select Tables.
All user tables of the database are now shown in the detail pane. Double-click the
Person.Address table to display its properties.

 S.2.6
It’s not possible to create another database with the same name.

 S.2.7
Choose the function File in the main menu and select Save as. Then change the
destination directory, enter the new filename (createdb), and click OK.

 S.2.8
Either enter USE test and execute it inside the Query Analyzer’s window or select
the database from the Database select box in the tool bar.

 S.2.9
Open the Query Editor, select the AdventureWorks database from the drop-down
menu, and enter SELECT * FROM orders. After starting the execution of the
statement, press the red stop button to interrupt the current execution.

Chapter 3
 S.3.1
The difference is in storage length and range of possible values.

TINYINT is stored in one byte with a value range from 0 to 255. SMALLINT is
stored in two bytes with a value range from –32768 to 32767. INT is stored in four
bytes with a value range from –2147483648 to 2147483647.

 S.3.2
CHAR is a string which can store up to 8,000 characters. It stores the amount of
characters given by declaration. VARCHAR also can store up to 8,000 characters.
However, the strings are stored with their actual length. Use CHAR when the data
values in a column are expected to be approximately of the same size. Use VARCHAR
when the data values in a column are expected to vary considerably in size.

 S.3.3

SET DATEFORMAT ymd

Appendix.indd 4 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 5

 S.3.4

SELECT DB_ID(‘test’)

 S.3.5

SELECT @@VERSION, @@LANGUAGE

 S.3.6

(01000101)
(11011111)
(00000110)

 S.3.7

A + NULL : result is NULL, independent of A
NULL = NULL : result is NULL
B OR NULL : true, if B is true, otherwise NULL
B AND NULL : false, if B is false, otherwise NULL

 S.3.8
By setting QUOTED_IDENTIFIER to OFF

 S.3.9
Delimited identifiers specify a special kind of identifiers that allow the use of reserved
keywords as identifiers or table names that include blanks.

Chapter 4

 S.4.1

USE master
GO
CREATE DATABASE test_db
 ON (NAME = test_db_dat,
 FILENAME=‘C:\tmp\test_db.mdf’,
 SIZE = 5, MAXSIZE = UNLIMITED, FILEGROWTH = 8%)
 LOG ON
 (NAME=test_db_log,
 FILENAME = ‘C:\tmp\test_db_log.ldf’,
 SIZE = 2, MAXSIZE = 10, FILEGROWTH = 500KB)

Appendix.indd 5 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.4.2

USE master
ALTER DATABASE test_db
 ADD LOG FILE (NAME=emp_log1,
 FILENAME=‘C:\tmp\test_db.ldf’,
 SIZE=2, MAXSIZE=UNLIMITED, FILEGROWTH=2)

 S.4.3

USE master
ALTER DATABASE test_db
 MODIFY FILE
 (NAME = test_db_dat, SIZE = 10MB)

 S.4.4
The NOT NULL specification is necessary for all columns that are part of the
primary key.

 S.4.5
dept_no and project_no are defined as CHAR-values, because they may contain
characters other than numerical values.

 S.4.6

CREATE TABLE customers (customerid CHAR(5) NOT NULL,
 companyName VARCHAR(40) NOT NULL,
 contactName CHAR(30) NULL,
 address VARCHAR(60) NULL,
 city CHAR(15) NULL,
 phone CHAR(24) NULL,
 fax CHAR(24) NULL)

CREATE TABLE orders (orderid INTEGER NOT NULL,
 customerid CHAR(5) NOT NULL,
 orderdate DATETIME NULL,
 shippeddate DATETIME NULL,
 freight MONEY NULL,
 shipname VARCHAR(40) NULL,
 shipaddress VARCHAR(60) NULL,
 quantity INTEGER NULL)

Appendix.indd 6 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 7

 S.4.7

ALTER TABLE orders
 ADD shipregion INTEGER NULL

 S.4.8

ALTER TABLE orders
 ALTER COLUMN shipregion CHAR(8) NULL

 S.4.9

ALTER TABLE orders
 DROP COLUMN shipregion

 S.4.10
After deleting a table with DROP TABLE all data, indices and triggers belonging
to the removed table are also dropped. In contrast to that, all views that are defined
using the table are not removed.

 S.4.11

DROP TABLE orders

DROP TABLE customers

CREATE TABLE customers (customerid CHAR(5) NOT NULL
 CONSTRAINT prim_cust PRIMARY KEY,

 companyName VARCHAR(40) NOT NULL,
 contactName CHAR(30) NULL,
 address VARCHAR(60) NULL,
 city CHAR(15) NULL,
 phone CHAR(24) NULL,
 fax CHAR(24) NULL)

CREATE TABLE orders (orderid INTEGER NOT NULL,
 customerid CHAR(5) NOT NULL,
 orderdate DATETIME NULL,
 shippeddate DATETIME NULL,
 freight MONEY NULL,

Appendix.indd 7 11/4/05 12:09:33 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 shipname VARCHAR(40) NULL,
 shipaddress VARCHAR(60) NULL,
 quantity INTEGER NULL,
 CONSTRAINT prim_ord PRIMARY KEY(orderid),
 CONSTRAINT foreign_orders FOREIGN
KEY(customerid) REFERENCES customers(customerid))

 S.4.12
It is not possible to insert the row, because of the referential constraint enforced in
the CREATE TABLE statement (see S.4.11). SQL Server will print the following
message:

“INSERT statement conflicted with COLUMN FOREIGN KEY constraint”

 S.4.13

ALTER TABLE orders
 ALTER COLUMN orderdate DATETIME NULL

ALTER TABLE orders
 ADD CONSTRAINT AddDateDflt DEFAULT getdate() FOR orderdate

 S.4.14

ALTER TABLE orders
 ADD CONSTRAINT limit_qu
 CHECK (quantity BETWEEN 1 AND 30)

 S.4.15
Creating the new data type:

sp_addtype western_countries, ‘char(2)’, ‘NOT NULL’
GO

Creating a new default value for our data type:

CREATE DEFAULT western_countries_default AS ‘CA’
GO

Appendix.indd 8 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 9

Binding the new default value to our data type:

sp_bindefault ‘western_countries_default’, ‘western_countries’
GO

Creating a rule for the allowed values for our data type:

CREATE RULE western_countries_rule
 AS @selection IN (‘CA’,‘WA’,‘OR’,‘NM’)
GO

Binding the new rule to our data type:

sp_bindrule western_countries_rule, western_countries
 GO

Now creating the new table with the user-defined data type:

CREATE TABLE regions
 (city CHAR(25) NOT NULL,
 country western_countries)

 S.4.16

sp_helpconstraint orders

 S.4.17

ALTER TABLE customers
 DROP CONSTRAINT prim_cust

That statement will not work, because the primary key constraint prim_cust is
referenced by the foreign key constraint defined in the table orders.

 S.4.18

ALTER TABLE orders
 DROP CONSTRAINT limit_qu

 S.4.19

sp_rename ‘customers.city’, town

Appendix.indd 9 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

Chapter 5
 S.5.1

SELECT *
 FROM works_on

 S.5.2

SELECT emp_no
 FROM works_on
 WHERE Job = ‘Clerk’

 S.5.3

SELECT emp_no
 FROM works_on
 WHERE project_no = ‘p2’
 AND emp_no < 10000

or:

SELECT emp_no
 FROM works_on
 WHERE project_no = ‘p2’
 AND emp_no BETWEEN 0 AND 9999

 S.5.4

SELECT emp_no
 FROM works_on
 WHERE enter_date NOT BETWEEN
 ‘01.01.1998’ AND ‘12.31.1998’

 S.5.5

SELECT emp_no
 FROM works_on
 WHERE project_no = ‘p1’
 AND (job = ‘Manager’ OR job = ‘Analyst’)

Appendix.indd 10 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 1 1

 S.5.6

SELECT enter_date
 FROM works_on
 WHERE project_no = ‘p2’
 AND Job IS NULL

S.5.7

SELECT emp_no, emp_lname
 FROM employee
 WHERE emp_fname LIKE ‘%t%t%’

 S.5.8

SELECT emp_no, emp_fname
 FROM employee
 WHERE emp_lname LIKE ‘_[ao]%es’

 S.5.9

SELECT emp_no
 FROM employee
 WHERE dept_no =
 (SELECT dept_no FROM department
 WHERE location = ‘Seattle’)

 S.5.10

SELECT emp_lname, emp_fname
 FROM employee
 WHERE emp_no IN
 (SELECT emp_no
 FROM works_on
 WHERE enter_date = ‘04/01/1998’)

 S.5.11

SELECT location
 FROM department
 GROUP BY location

Appendix.indd 11 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.5.12
If you use GROUP BY without any additional specifications (aggregates, HAVING
clause), it is exactly like DISTINCT. (It divides a table into groups and returns one
row for each group.)

 S.5.13
All NULL values belong to one group. (This is not exactly in accordance with the
fact that each NULL value is a value per se, and it cannot be compared with other
NULL values.)

 S.5.14
COUNT(expression) takes an argument (i.e., a column or expression) and displays
all non NULL occurrences of that argument. COUNT(*) counts all rows, whether or
not any particular column contains a NULL value.

 S.5.15

SELECT MAX(emp_no)
 FROM employee

 S.5.16

SELECT job
 FROM works_on
 GROUP BY job
 HAVING COUNT(*) > 2

 S.5.17

SELECT DISTINCT emp_no
 FROM works_on
 WHERE (Job = ‘Clerk’ OR emp_no IN
 (SELECT emp_no
 FROM employee
 WHERE dept_no=‘d3’))

 S.5.18
The inner SELECT statement can be used in conjunction with a comparison operator,
such as =, if its result set has a maximum of one row (in this case = may be used).
The result of the SELECT statement in E.5.18 has more than one row. Therefore, the
comparison operator = has to be replaced with the IN operator.

Appendix.indd 12 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 1 3

The correct syntax form is:

SELECT project_name
 FROM project
 WHERE project_no IN
 (SELECT project_no FROM works_on WHERE Job = ‘Clerk’)

 S.5.19
Temporary tables can be used to store the intermediate result of a complex query.

 S.5.20
Local temporary tables are removed at the end of the current session, while the
global temporary tables are removed at the end of the session that created the table.

Chapter 6
 S.6.1

SELECT *
 FROM project, works_on
 WHERE project.project_no = works_on.project_no

SELECT project.*, emp_no, job, enter_date
 FROM project, works_on
 WHERE project.project_no = works_on.project_no

SELECT *
 FROM project, works_on

SQL-92:

SELECT *
 FROM project
 JOIN works_on ON project.project_no = works_on.project_no

SELECT project.*, emp_no, Job, enter_date
 FROM project JOIN works_on
 ON project.project_no = works_on.project_no

SELECT *
 FROM project CROSS JOIN works_on

Appendix.indd 13 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.6.2
You need at least N-1 join conditions.

 S.6.3

SELECT emp_no, job
 FROM works_on, project
 WHERE works_on.project_no = project.project_no
 AND project_name = ‘Gemini’

SQL-92:

SELECT emp_no, job
 FROM works_on JOIN project
 ON works_on.project_no = project.project_no
 WHERE project_name = ‘Gemini’

 S.6.4

SELECT emp_fname, emp_lname
 FROM employee, department
 WHERE employee.dept_no = department.dept_no
 AND (dept_name = ‘Research’ OR dept_name = ‘Accounting’)

SQL-92:

SELECT emp_fname, emp_lname
 FROM employee JOIN department
 ON employee.dept_no = department.dept_no
 WHERE (dept_name = ‘Research’ OR dept_name = ‘Accounting’)

 S.6.5

SELECT enter_date
 FROM works_on, employee
 WHERE works_on.emp_no = employee.emp_no
 AND job = ‘Clerk’
 AND dept_no = ‘d1’

Appendix.indd 14 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 1 5

SQL-92:

SELECT enter_date
 FROM works_on JOIN employee
 ON works_on.emp_no = employee.emp_no
 WHERE job = ‘Clerk’
 AND dept_no = ‘d1’

 S.6.6

SELECT project_name
 FROM project
 WHERE project_no IN
 (SELECT project_no
 FROM works_on
 WHERE Job = ‘Clerk’
 GROUP BY project_no
 HAVING COUNT(*) > 1)

 S.6.7

SELECT emp_fname, emp_lname
 FROM employee, works_on, project
 WHERE employee.emp_no = works_on.emp_no
 AND works_on.project_no = project.project_no
 AND project_name = ‘Mercury’
 AND job = ‘Manager’

SQL-92:

SELECT emp_fname, emp_lname
 FROM employee
 JOIN works_on ON employee.emp_no = works_on.emp_no
 JOIN project ON works_on.project_no = project.project_no
 WHERE project_name = ‘Mercury’
 AND job = ‘Manager’

 S.6.8

SELECT emp_fname, emp_lname
 FROM employee
 WHERE emp_no IN

Appendix.indd 15 11/4/05 12:09:34 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 1 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 (SELECT a.emp_no
 FROM works_on a, works_on b
 WHERE b.enter_date=a.enter_date
 AND a.emp_no != b.emp_no)

 S.6.9

SELECT a.emp_no
 FROM employee_enh a, employee_enh b
 WHERE a.domicile = b.domicili
 AND a.dept_no = b.dept_no
 AND a.emp_no != b.emp_no

 S.6.10

SELECT emp_no
 FROM employee, department
 WHERE employee.dept_no = department.dept_no
 AND dept_name = ‘Marketing’

SELECT emp_no
 FROM employee
 WHERE dept_no =
 (SELECT dept_no
 FROM department
 WHERE dept_name = ‘Marketing’)

SQL-92:

SELECT emp_no
 FROM employee
 JOIN department
 ON employee.dept_no = department.dept_no
 WHERE dept_name = ‘Marketing’

Chapter 7
 S.7.1

INSERT INTO employee values(11111,‘Julia’,‘Long’,NULL)

Appendix.indd 16 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 1 7

 S.7.2

CREATE TABLE emp_d1_d2 (emp_no INTEGER NOT NULL,
 emp_fname CHAR(20) NOT NULL,
 emp_lname CHAR(20) NOT NULL,
 dept_no CHAR(4) NULL)

INSERT INTO emp_d1_d2
SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE dept_no IN (‘d1’, ‘d2’)

or:

SELECT emp_no, emp_fname, emp_lname, dept_no
 INTO emp_d1_d2
 FROM employee
 WHERE dept_no IN (‘d1’, ‘d2’)

 S.7.3

CREATE TABLE employee_three (emp_no INTEGER NOT NULL,
 emp_fname CHAR(20) NOT NULL,
 emp_lname CHAR(20) NOT NULL,
 dept_no CHAR(4) NULL)
INSERT INTO employee_three(emp_no, emp_fname, emp_lname, dept_no)
 SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE emp_no IN
 (SELECT emp_no FROM works_on
 WHERE enter_date BETWEEN ‘01.01.1998’ AND ‘12.31.1998’)

 S.7.4

UPDATE works_on
 SET job = ‘Clerk’
 WHERE job = ‘Manager’ AND project_no = ‘p1’

 S.7.5

UPDATE project
 SET budget = NULL

Appendix.indd 17 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 1 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.7.6

UPDATE works_on
 SET job = ‘Manager’
 WHERE emp_no = 28559

 S.7.7

UPDATE project
 SET budget = budget/10+budget
 WHERE project_no IN(
 SELECT project_no FROM works_on
 WHERE job=‘Manager’ AND emp_no=10102)

 S.7.8

UPDATE department
SET dept_name=‘Sales’
WHERE dept_no =
(SELECT dept_no FROM employee
 WHERE emp_lname=‘James’)

 S.7.9

UPDATE works_on
 SET enter_date=‘12/12/1998’
 WHERE project_no=‘p1’ AND emp_no IN (
 SELECT emp_no FROM employee
 JOIN department ON employee.dept_no = department.dept_no
 WHERE dept_name=‘Sales’)

Chapter 8
 S.8.1

-- This procedure inserts 3,000 rows in the employee table
USE sample
declare @i integer
declare @first_name char(20)
declare @last_name char(20)
declare @department char(4)

Appendix.indd 18 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 1 9

set @i = 1
set @first_name = ‘Jane’
set @last_name = ‘Smith’
set @department = ‘d1’
while @i < 3001
begin
insert into employee
 values (@i, @first_name, @last_name, @department)
set @i = @i+1
end

 S.8.2

declare @i int , @order_id integer
declare @customer_id char(5)
declare @shipped_date datetime
declare @freight money

set @i = 1
set @customer_id = ‘ALKHE’
set @shipped_date = getdate()
set @freight = 100.00
while @i < 10001
begin

set @order_id =ceiling (rand ((datepart(mm,getdate())*100000)
+(datepart(ss, GETDATE())*1000)
 + DATEPART(ms,getdate())) * 100000000)
insert into orders (orderid, customerid, shippeddate, freight)
 values(@order_id, @customer_id, @shipped_date, @freight)
set @i = @i+1
end

Chapter 9
 S.9.1

CREATE INDEX i_enterdate
 ON works_on(enter_date)
 WITH FILLFACTOR = 60

Appendix.indd 19 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 2 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.9.2

CREATE UNIQUE INDEX i_lfname
 ON employee (emp_lname, emp_fname)

A composite index can be used for index access for the leading part of the index.
Therefore, there is a significant difference if you change the order of the columns in
a composite index.

 S.9.3
An index that is implicitly created for the primary key of a table cannot be dropped

using the DROP INDEX statement. It can be dropped only if you drop the constraint
(using the ALTER TABLE statement with the DROP CONSTRAINT clause).

 S.9.4
During index access, only the rows that satisfy the search criteria of the query
are accessed. This is in most cases an obvious advantage in relation to a table
scan, where the system does not use an index. But besides this significant benefit,
index scan can have two disadvantages: In contrast to a table scan, SQL Server
uses smaller I/O units to read rows for index access; therefore, a number of read
operations will be comparatively higher. The second disadvantage of the index
access method (using a nonclustered index) is that data pages must be read
repeatedly, because the rows to be selected are scattered on data pages.

 S.9.5

CREATE INDEX i_employee_lname ON employee (emp_lname)

 S.9.6

CREATE INDEX i_emp_name ON employee (emp_lname, emp_fname)

 S.9.7

CREATE INDEX i_workson_empno ON works_on (emp_no)
CREATE INDEX i_employee_empno ON employee (emp_no)

 S.9.8

CREATE INDEX i_department_deptno ON department (dept_no)
CREATE INDEX i_employee_deptno ON employee (dept_no)
CREATE INDEX i_department_deptname ON department (dept_name)

Appendix.indd 20 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 2 1

Chapter 10
 S.10.1

CREATE VIEW v_10_1
 AS SELECT *
 FROM employee WHERE dept_no = ‘d1’

 S.10.2

CREATE VIEW v_10_2
 AS SELECT project_no, project_name
 FROM project

 S.10.3

CREATE VIEW v_10_3
 AS SELECT emp_lname, emp_fname
 FROM employee, works_on
 WHERE works_on.emp_no = employee.emp_no
 AND enter_date BETWEEN ‘06/01/1998’ AND ‘12/31/1998’

S.10.4

CREATE VIEW v_10_4 (first, last)
 AS SELECT emp_fname, emp_lname
 FROM v_10_3

 S.10.5

SELECT *
 FROM v_10_1 WHERE emp_lname LIKE ‘M%’

 S.10.6

CREATE VIEW v_10_6
 AS SELECT project.*
 FROM project, employee, works_on
 WHERE project.project_no = works_on.project_no
 AND employee.emp_no = works_on.emp_no
 AND emp_lname = ‘Smith’

Appendix.indd 21 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 2 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.10.7

ALTER VIEW v_10_1
 AS SELECT *
 FROM employee WHERE dept_no IN(‘d1’,‘d2’)

 S.10.8

DROP VIEW v_10_3.

The DROP VIEW statement also removes the view v_10_4.

 S.10.9

INSERT INTO v_10_2 VALUES(‘p4’,‘Moon’)

 S.10.10

CREATE VIEW v_10_10
 AS SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE emp_no < 10000
 WITH CHECK OPTION
INSERT INTO v_10_10 VALUES(22123, ‘Michael’ , ‘Kohn’, ‘d3’)
 doesn’t work, because the employee number is greater than 10,000

 S.10.11

CREATE VIEW v_10_11
 AS SELECT emp_no, emp_fname, emp_lname, dept_no
 FROM employee
 WHERE emp_no < 10000
INSERT INTO v_10_11 VALUES(22123, ‘Michael’ , ‘Kohn’, ‘d3’)
-- works, because the employee number won’t be checked

 S.10.12

CREATE VIEW v_10_12
 AS SELECT emp_no, project_no, enter_date, job
 FROM works_on
 where enter_date between ‘01.01.1998’ and ‘12.31.1999’
 with check option

Appendix.indd 22 11/4/05 12:09:35 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 2 3

UPDATE v_10_12 SET enter_date = ‘06/01/1997’
 where emp_no = 29346 and project_no=‘p1’;
-- doesn’t work, because the date does not belong to the years 1998 or 1999.

 S.10.13

CREATE VIEW v_10_13
 AS SELECT emp_no, project_no, enter_date, job
 FROM works_on
 where enter_date between ‘01.01.1998’ and ‘12.31.1999’

UPDATE v_10_12 SET enter_date = ‘06/01/1997’
 where emp_no = 29346 and project_no=‘p1’;
-- this UPDATE statement works

Chapter 11
 S.11.1

USE master
SELECT filename from sysdatabases
 WHERE name = ‘sample’

 S.11.2

USE sample
SELECT sysindexes.name
 FROM sysobjects, sysindexes
 WHERE sysobjects.id = sysindexes.id
 AND sysobjects.name = ‘employee’
 AND sysindexes.indid = 1

 S.11.3

USE sample
SELECT COUNT(*)
 FROM sysconstraints, sysobjects
 WHERE sysconstraints.id = sysobjects.id
 AND sysobjects.name = ‘employee’

Appendix.indd 23 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 2 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.11.4

USE sample
SELECT sysconstraints.status
 FROM syscolumns, sysobjects, sysconstraints
 WHERE syscolumns.id = sysconstraints.colid
 AND sysobjects.id = sysconstraints.id
 AND sysobjects.name = ‘employee’
 AND syscolumns.name = ‘dept_no’

 S.11.5
The system procedure sp_depends uses the information that is contained in the
system table sysdepends.

 S.11.6

SELECT syscolumns.name
 FROM systypes, syscolumns
 WHERE systypes.xtype = syscolumns.xtype
 AND systypes.usertype = syscolumns.usertype
 AND systypes.type = syscolumns.type
 AND systypes.name = ‘western_countries’

 S.11.7

USE northwind
SELECT table_name from information_schema.tables
WHERE table_type = ‘BASE TABLE’

 S.11.8

USE sample
SELECT column_name, data_type, ordinal_position
 FROM information_schema.columns
 WHERE table_name = ‘employee’

Chapter 12
 S.12.1
In Windows security mode SQL Server exclusively uses Windows user accounts,
assuming that they already have been validated at the operating system level (trusted

Appendix.indd 24 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 2 5

connection). In Mixed mode, there are two security options: SQL Server security and
Windows security.

 S.12.2
The login is used to allow a certain user to log in to the SQL Server system, whereas
the account is used to grant access to a particular database for a certain user or a role.

 S.12.3

sp_addlogin ‘peter’,‘abc’,‘sample’
GO
sp_addlogin ‘paul’,‘def’, ‘sample’
GO
sp_addlogin ‘mary’,‘fgh’, ‘sample’
GO
use master
SELECT name FROM syslogins

 S.12.4

use sample
GO
sp_grantdbaccess ‘peter’,‘s_peter’
GO
sp_grantdbaccess ‘paul’,‘s_paul’
GO
sp_grantdbaccess ‘mary’,‘s_mary’

 S.12.5

use sample
GO
sp_addrole ‘managers’
GO
sp_addrolemember ‘managers’,‘s_peter’
GO
sp_addrolemember ‘managers’,‘s_mary’
GO
sp_addrolemember ‘managers’,‘s_paul’
sp_helpuser ‘managers’

Appendix.indd 25 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 2 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.12.6

GRANT CREATE TABLE
 TO s_peter

GRANT CREATE PROCEDURE
 TO s_mary

 S.12.7

GRANT UPDATE ON employee(emp_lname,emp_fname)
 TO s_peter

 S.12.8

CREATE VIEW readnames
 AS SELECT emp_lname,emp_fname FROM employee
GO
GRANT SELECT ON readnames
 TO s_peter,s_mary

 S.12.9

GRANT INSERT ON project
 TO managers

 S.12.10

REVOKE SELECT ON readnames
 FROM s_peter

 S.12.11

DENY INSERT ON project
 TO s_mary

 S.12.12
The functionality of views in relation to the T-SQL statements GRANT, REVOKE,
and DENY is limited, because with the former you can restrict only the access to one
or more columns and one or more rows. (Using T-SQL statements you can restrict
operations on data, such as reading and writing.)

Appendix.indd 26 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 2 7

 S.12.13

USE sample
GO
sp_helpuser s_mary

Chapter 13
 S.13.1

CREATE TRIGGER tr_refint_dept
 ON department
 FOR DELETE, UPDATE
 AS
 IF UPDATE(dept_no)
 BEGIN
 IF (SELECT COUNT(*)
 FROM employee, deleted
 WHERE employee.dept_no = deleted.dept_no) >0
 BEGIN
 ROLLBACK TRANSACTION
 PRINT “Transaction failed!”
 END
 ELSE PRINT “Transaction succeeded”
 END

CREATE TRIGGER tr_refint_dept2
 ON employee
 FOR INSERT, UPDATE
 AS
 IF UPDATE(dept_no)
 BEGIN
 IF (SELECT department.dept_no
 FROM department, inserted
 WHERE department.dept_no = inserted.dept_no) IS NULL
 BEGIN
 ROLLBACK TRANSACTION
 PRINT “Transaction failed!”
 END
 ELSE PRINT “Transaction succeeded”
 END

Appendix.indd 27 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 2 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.13.2

CREATE TRIGGER tr_refint_project
ON project
FOR DELETE, UPDATE
 AS
 IF UPDATE(project_no)
 BEGIN
 IF (SELECT COUNT(*)
 FROM works_on, deleted
 WHERE works_on.project_no = deleted.project_no) >0
 BEGIN
ROLLBACK TRANSACTION
PRINT “Transaction failed!”
END
ELSE PRINT “Transaction succeeded”
END
CREATE TRIGGER tr_ref_project2
ON works_on
FOR INSERT, UPDATE
 AS
 IF UPDATE(project_no)
 BEGIN
 IF (SELECT project.project_no
 FROM project, inserted
 WHERE project.project_no = inserted.project_no) IS NULL
BEGIN
ROLLBACK TRANSACTION
PRINT “Transaction failed!”
END
ELSE PRINT “Transaction succeeded”
END

 S.13.3

 First step: Implement the program

using System;
using System.Data;
using System.Data.SqlClient;

Appendix.indd 28 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 2 9

using Microsoft.SqlServer.Server;
public class StoredProcedures
{
 public static void WorksOn_Integrity()
 {
 SqlTriggerContext context = SqlContext.TriggerContext;
 if(context.IsUpdatedColumn(0)) //Emp_No
 {
 SqlConnection conn = new SqlConnection(“context connection=true”);
 conn.Open();
 SqlCommand cmd = conn.CreateCommand();
 cmd.CommandText = @“SELECT employee.emp_no
 FROM employee, inserted
 WHERE employee.emp_no = inserted.emp_no”;
 SqlPipe pipe = SqlContext.Pipe;
 if(cmd.ExecuteScalar() == null)
 {
 System.Transactions.Transaction.Current.Rollback();
 pipe.Send(“No insertion/modification of the row”);
 }
 else
 pipe.Send(“The row inserted/modified”);
 }
 }
}

 Second step: Compile the program

csc /target:library Example13_3.cs

 Third step: Create the corresponding assembly and create the trigger

CREATE ASSEMBLY Example13_3 FROM ‘C:\Program\Microsoft SQL
Server\assemblies\Example13_3.dll’
WITH PERMISSION_SET=EXTERNAL_ACCESS
GO
CREATE TRIGGER workson_integrity ON works_on
AFTER INSERT, UPDATE AS
EXTERNAL NAME Example13_3.StoredProcedures.WorksOn_Integrity

Appendix.indd 29 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 3 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.13.4
 First step: Implement the program

using System;
using System.Data;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;
public class StoredProcedures
 {
 public static void Refint_WorksOn2()
 {
 SqlTriggerContext context = SqlContext.TriggerContext;
 if(context.IsUpdatedColumn(2)) //Emp_No
 {
 SqlConnection conn = new SqlConnection(“context
connection=true”);
 conn.Open();
 SqlCommand cmd = conn.CreateCommand();
 cmd.CommandText = @“SELECT COUNT(*)
 FROM WORKS_ON, deleted
 WHERE works_on.emp_no = deleted.emp_no”;
 SqlPipe pipe = SqlContext.Pipe;
 if(Convert.ToInt32(cmd.ExecuteScalar()) > 0)
 {
 System.Transactions.Transaction.Current.Rollback();
 pipe.Send(“No deletion/modification of the row”);
 }
 else
 pipe.Send(“The row deleted/modified”);
 }
 }
}

 Second step: Compile the program

csc /target:library Example13_4.cs

Appendix.indd 30 11/4/05 12:09:36 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 3 1

 Third step: Create the corresponding assembly and create the trigger

CREATE ASSEMBLY Example13_4 FROM ‘C:\Program\Microsoft SQL
Server\assemblies\Example13_4.dll’
 WITH PERMISSION_SET=EXTERNAL_ACCESS
GO
CREATE TRIGGER refint_workson2 ON employee
 AFTER DELETE, UPDATE AS
 EXTERNAL NAME Example13_4.StoredProcedures.Refint_WorksOn2

Chapter 14
 S.14.1
Transactions are used to keep the data consistent using its “all or nothing” property:
Either all statements are (successfully) executed or no one of them is executed.

 S.14.2
A distributed transaction needs a coordinator that coordinates the execution of all
transaction parts on different servers. Also, you use the BEGIN TRANSACTION
statement to start a local transaction and BEGIN DISTRIBUTED TRANSACTION
to start a distributed transaction.

 S.14.3
Each Transact-SQL statement always belongs either implicitly or explicitly to
a transaction. When a session operates in implicit transaction mode, selected
statements implicitly issue the BEGIN TRANSACTION statement. This means
that you do nothing to start such a transaction. However, the end of each implicit
transaction must be explicitly committed or rolled back using the COMMIT
(i.e., ROLLBACK) statement. An explicit transaction is specified with the pair
of statements BEGIN TRANSACTION and COMMIT TRANSACTION (or
ROLLBACK TRANSACTION).

 S.14.4
None.

 S.14.5
Using the global variable @@error

Appendix.indd 31 11/4/05 12:09:37 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 3 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.14.6
The SAVE TRANSACTION statement is used to execute parts of an entire transaction.

 S.14.7
The advantage of the row-level locking is that it maximizes concurrency, because all
other rows of the table that are stored on the same page can be used by other processes.
On the other hand, it increases system overhead, because each locked row requires one
lock (and you need many more locks if you use row-level locking instead of page-level
locking). The advantage of row-level locking is the disadvantage of page-level locking
and vice versa.

 S.14.8
Using the SET LOCK_TIMEOUT statement, a user can specify whether a transaction
should wait or not for a lock to be released. Also, there are several options in the FROM
clause of the SELECT statement that can be used by a user to influence locking behavior
of SQL Server (such as UPDALOCK, TABLOCK; ROWLOCK, and PAGLOCK).

 S.14.9
An intent lock is always placed at a next level in a hierarchy of database objects
above the process intents to lock. An X lock, i.e., S lock, is always used for the
object that actually should be locked.

 S.4.10
The process of converting many page-level locks into one table lock (or many row-
level locks into one page lock).

 S.14.11
READ UNCOMMITTED is the simplest isolation level and therefore allows the
maximum of data inconsistency of all isolation levels. On the other hand, the
advantage of this isolation level is that it allows the highest concurrency. The
advantage of SERIALIZABLE is that there will be no data inconsistency at all
when you apply this isolation level for a process. On the other hand, it decreases
concurrency of the processes at most.

 S.14.12
A deadlock is a special situation in which two transactions block the progress of each
other. (It is possible that several transactions cause a deadlock, if the first transaction
blocks the second, the second the third, and so on, and if the last transaction blocks
the first one.)

Appendix.indd 32 11/4/05 12:09:37 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 3 3

 S.14.13
SQL Server always chooses the process that closed the loop in a deadlock. Users can
use the SET DEADLOCK_PRIORITY statement to choose the “victim” process.

 S.14.14
Pessimistic concurrency control locks resources as they are required, for the duration
of a transaction. If a conflict occurs, the database system guaranties data consistency.
Optimistic concurrency control allows transactions to execute without using locking
mechanism. If a conflict occurs, the application must read the data and attempt the
change again.

Chapter 15
 S.15.1
An index page is identical to a data page except that it has only two parts:

 Page header

 Data space

(The row offset table does not appear at the end of an index page.)

 S.15.2
In the TEMP directory.

 S.15.3
Multiple instances have the benefits in the following two areas:

 Dividing different database types. (The main purpose of multiple instances is to
divide production databases, test databases, and sample databases into different
groups to run on different instances.)

 Server consolidation. (Instead of having N machines to run N SQL Server
systems, you can use one [big] computer and run N instances.)

The disadvantage of multiple instances is that you need a very powerful computer
to manage multiple instances.

Appendix.indd 33 11/4/05 12:09:37 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 3 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.15.4
Multithreading specifies that several threads from different clients are scheduled and
execute using one system process.

 S.15.5
Data load, backup, and recovery as well as query execution can be executed in
parallel using SQL Server.

Chapter 18
 S.18.1
The primary filegroup is by default also the default filegroup. The database
administrator can set another filegroup to be the default filegroup using the ALTER
DATABASE statement.

 S.18.2
The sp_dboption system procedure is the deprecated feature. For this reason you
should use the DATABASEPROPERTYEX function to view database options.

 S.18.3
To modify database options use either SQL Server Management Studio or the DBCC
command. The use of the sp_dboption system procedure is not recommended (see
S.18.2).

 S.18.4
When the autoshrink database option is set, SQL Server implicitly shrinks the size
of database files that belong to the database.

 S.18.5
No.

Chapter 19
 S.19.1
Expand the server, expand the Security folder, right-click Logins, and select New Login.
On the General tab of the Login dialog box, select SQL Server Authentication, type
the new login name (for example peter1), and type the corresponding password. In the
Defaults database dialog box, select sample. The new login appears in the detail pane.

Appendix.indd 34 11/4/05 12:09:37 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 3 5

 S.19.2
In the Databases folder expand the database. Expand Security, right-click Users, and
select New User. In the Database User dialog box select the login name and type the
new user name under it. In the Database role membership frame, select public.

 S.19.3
In the Databases folder expand the database. Expand Security, right-click Roles,
and select New Database Role. In the Database Role dialog box type the new role
name (managers). In the Members of the role frame, click Add to add user names.
Select the user names that belong to the new role.

 S.19.4
Right-click the database and select Properties. On the Permissions page of the
Database Properties dialog box in the row with the user name (s_peter), check the
boxes for the Create table and Create procedure permissions.

 S.19.5
To manage permissions for a user, expand the server and expand Databases. Right-
click the database and then click Properties. In the Database Properties dialog box
choose the Permissions page. Select the user and check the corresponding box in the
Grant column.

 S.19.6
In the Databases folder expand the database, expand Roles, and expand Database
Roles. Double-click the role (managers) that you want to modify. Select the
Securables page, mark the table (project), and check the box at the intersection of
Grant and Insert.

Chapter 20
 S.20.1
The benefit of differential backups is that you save time in the restore process,
because to recover a database completely, you need a full database backup and only
the latest differential backup. If you use transaction logs for the same scenario, you
have to apply the full database backup and all existing transaction logs to bring the
database to a consistent state.

A disadvantage of differential backups is that you cannot use them to recover data to
a specific point in time because they do not store intermediate changes to the database.

Appendix.indd 35 11/4/05 12:09:37 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 3 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

 S.20.2
It depends upon several factors, such as the size of the database, the number of
modification operations, and so on.

 S.20.3
There is no way to make the differential backup of the master database. You can
make only the full database backup of this system database.

 S.20.4
One common technique is to configure database data files on a RAID 0 drive and
place the transaction log and backups on a mirrored drive (RAID 1). If the data must
be quickly recoverable, use RAID 5 for a database and RAID 1 for the corresponding
transaction log(s).

 S.20.5
Automatic recovery is done by the system, while manual recovery must be initiated
by the system administrator.

 S.20.6
The RESTORE VERIFYONLY statement.

 S.20.7
Using the full recovery model, no work is lost due to a lost or damaged data file,
and you can recover to any point in time. On the other hand, the corresponding
transaction log may be very voluminous. Using bulk-logged recovery model, you
cannot recover to any point in time, but the corresponding transaction log is smaller,
because minimal log space is used by bulk operations. The simple recovery model
provides the simplest backup strategy, but all changes since the most recent database
or differential backup must be manually redone.

Chapter 21
 S.21.1
You can automate, among others, the following tasks: data transfer, backing up the
database and transaction log, as well as maintaining indices and data integrity.

 S.21.2
Create one job to back up your transaction log and specify two schedules.

Appendix.indd 36 11/4/05 12:09:37 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 3 7

 S.21.3
Create an alert on the SQL Server counter called Locks object counter.

 S.21.4
A SQL Server error message contains the following parts: A unique error message
number, a severity level number, a line number, which identifies the line where the
error occurred, and the error text.

 S.21.5
The three most important columns of the sys.messages catalog view are message_
id, severity, and text.

Chapter 24
 S.24.1
Primary key is required to uniquely identify the rows of the published table. All tables
using transactional replication must explicitly contain a primary key.

 S.24.2
Partition tables and/or filter data, which you want to replicate.

 S.24.3
You can minimize update conflicts by limiting Subscriber update capabilities to an
appropriate subset of data.

 S.24.4
Log Reader Agent searches for marked transactions and copies them from the transaction
log on the publisher to the distribution database. It is used for transactional replications.
The synchronization job between all sites is done by Merge Agent. It is used for merge
replications. Finally, Snapshot Agent generates the schema and data of the published
tables during snapshot replication.

Chapter 25
 S.25.1
OLTP systems have short transactions, many (possibly hundreds or thousands of) users,
continuous read and write operations, and medium-size data. Data warehousing systems

Appendix.indd 37 11/4/05 12:09:38 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 3 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 : A B e g i n n e r ’ s G u i d e

have a small number of users, large size of data stored in a database, and, after the load
process, only read operations.

 S.25.2
The ER model is highly normalized, while the dimensional model is usually
denormalized, because it uses nonredundant data. Also the ER model produces very
complex database design for large databases.

 S.25.3
Extracting specifies the process of loading source data from multiple, heterogeneous
operational systems in a temporary staging area. Data transformation is the process
of formatting and modifying data that is extracted from various sources to make the
information more useful. Finally, during the load process, the cleaned data is loaded
into the data warehouse.

 S.25.4
In a dimensional model there is one fact table and many dimension tables. A fact table
contains a very large amount of the data stored in a data warehouse (about 70%). Also,
columns of a fact table are numeric and additive.

 S.25.5
The MOLAP structure offers the best query performance for data analysis, because
the aggregations and a copy of the base data are stored in a multidimensional
structure allowing the high-speed query processor to retrieve data quickly. However,
data in MOLAP is duplicated in the cube and consumes the most storage space.

The ROLAP structure allows you to use standard Transact-SQL statements to
query against the relational tables. It also eliminates data duplication and does not
require extra storage space. However, the query performance is not as fast as with
the MOLAP and HOLAP structure.

The HOLAP structure retrieves data in the cube quickly and consumes less storage
space than MOLAP.

 S.25.6
Because of the large amount of the data that is stored in a data warehouse. In that
case, doing aggregations on the fly requires a significant amount of time.

Appendix.indd 38 11/4/05 12:09:38 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix

 A p p e n d i x : S o l u t i o n s 3 9

Chapter 28
 S.28.1
The query for this report is:

SELECT w.emp_no, emp_lname
 FROM employee e, works_on w
 WHERE e.emp_no = w.emp_no
 AND w.job = ‘Clerk’

 S.28.2
The query for this report is:

USE sample
 SELECT budget
 FROM employee e, project p, department d, works_on w
 WHERE w.project_no = p.project_no
 AND d.dept_no = e.dept_no
 AND e.emp_no = w.emp_no
 AND d.dept_name = ‘Research’
 AND e.emp_no < 25000

Appendix.indd 39 11/4/05 12:09:38 PM

D_Base / Microsoft SQL Server 2005: ABG / Petkovic / 226093-9 / Appendix
Blind folio 40

Appendix.indd 40 11/4/05 12:09:38 PM

