
3.7.2 TCP Delay Modeling

We end this chapter with some simple models for calculating the time it takes TCP
to send an object (such as an image, a text file, or an MP3). For a given object, we
define the latency as the time from when the client initiates a TCP connection
until the time at which the client receives the requested object in its entirety. The
models presented here give important insight into the key components of latency,
including initial TCP handshaking, TCP slow start, and the transmission time of
the object.

This simple analysis supposes that the network is uncongested—that is, that the
TCP connection transporting the object does not have to share link bandwidth with
other TCP or UDP traffic. Also, in order not to obscure the central issues, we carry
out the analysis in the context of the simple one-link network as shown in Figure
3.54. (This link might model a single bottleneck on an end-to-end path. See also the
homework problems for an explicit extension to the case of multiple links.)

We also make the following simplifying assumptions:

� The amount of data that the sender can transmit is limited solely by the sender’s
congestion window. (Thus, the TCP receive buffers are large.)

� Packets are neither lost nor corrupted, so that there are no retransmissions.

� All protocol header overheads—including TCP, IP, and link-layer headers—are
negligible and ignored.

� The object (that is, file) to be transferred consists of an integer number of seg-
ments of size MSS (maximum segment size).

� The only packets that have non-negligible transmission times are packets that
carry maximum-sized TCP segments. Request messages, acknowledgments, and
TCP connection-establishment segments are small and have negligible transmis-
sion times.

� The initial threshold in the TCP congestion-control mechanism is a large value
that is never attained by the congestion window.
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We also introduce the following notation:

� The size of the object to be transferred is O bits.

� The MSS is S bits (for example, 536 bytes).

� The transmission rate of the link from the server to the client is R bps.

Before beginning the formal analysis, let us try to gain some intuition. What
would be the latency if there were no congestion-window constraint, that is, if the
server were permitted to send segments back to back until the entire object was sent.
To answer this question, first note that one RTT is required to initiate the TCP con-
nection. After one RTT, the client sends a request for the object (which is piggy-
backed onto the third segment in the three-way TCP handshake). After a total of two
RTTs, the client begins to receive data from the server. The client receives data from
the server for a period of time O/R, the  time for the server to transmit the entire
object. Thus, in the case of no congestion-window constraint, the total latency is 2
RTT + O/R. This represents a lower bound; the slow-start procedure, with its
dynamic congestion window, will of course increase this latency.

Static Congestion Window

Although TCP uses a dynamic congestion window, it is instructive to analyze first
the case of a static congestion window. Let W, a positive integer, denote a fixed-size
static congestion window. For the static congestion window, the server is not per-
mitted to have more than W unacknowledged outstanding segments. When the
server receives the request from the client, the server immediately sends W seg-
ments back to back to the client. The server then sends one segment into the network
for each acknowledgment it receives from the client. The server continues to send
one segment for each acknowledgment until all of the segments of the object have
been sent. There are two cases to consider:

1. WS/R � RTT + S/R. In this case, the server receives an acknowledgment for
the first segment in the first window before the server completes the transmis-
sion of the first window.

2. WS/R � RTT + S/R. In this case, the server transmits the first window’s worth
of segments before the server receives an acknowledgment for the first seg-
ment in the window.

Let us first consider the first case, which is illustrated in Figure 3.55. In this fig-
ure the window size is W = 4 segments. One RTT is required to initiate the TCP con-
nection. After one RTT, the client sends a request for the object (which is
piggybacked onto the third segment in the three-way TCP handshake). After a total
of two RTTs, the client begins to receive data from the server. Segments arrive
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periodically from the server every S/R seconds, and the client acknowledges every
segment it receives from the server. Because the server receives the first acknowl-
edgment before it completes sending a window’s worth of segments, the server con-
tinues to transmit segments after having transmitted the first window’s worth of
segments. And because the acknowledgments arrive periodically at the server every
S/R seconds from the time when the first acknowledgment arrives, the server trans-
mits segments continuously until it has transmitted the entire object. Thus, once the
server starts to transmit the object at rate R, it continues to transmit the object at rate
R until the entire object is transmitted. The latency therefore is 2 RTT + O/R.
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Now let us consider the second case, which is illustrated in Figure 3.56. In this
figure, the window size is W = 2 segments. Once again, after a total of two RTTs,
the client begins to receive segments from the server. These segments arrive period-
ically every S/R seconds, and the client acknowledges every segment it receives
from the server. But now the server completes the transmission of the first window
before the first acknowledgment arrives from the client. Therefore, after sending a
window, the server must stall and wait for an acknowledgment before resuming
transmission. When an acknowledgment finally arrives, the server sends a new seg-
ment to the client. With the first acknowledgment, a window’s worth of acknowl-
edgments arrives, and each successive acknowledgment is spaced by S/R seconds.
For each of these acknowledgments, the server sends exactly one segment. Thus, the
server alternates between two states: a transmitting state, during which it transmits
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W segments, and a stalled state, during which it transmits nothing and waits for an
acknowledgment. The latency is equal to 2 RTT plus the time required for the server
to transmit the object, O/R, plus the amount of time that the server is in the stalled
state. To determine the amount of time the server is in the stalled state, let K be the
number of windows of data that cover the object; that is, K = O/WS (if O/WS is not
an integer, then round K up to the nearest integer). The server is in the stalled state
between the transmission of each of the windows, that is, for K – 1 periods of time,
with each period lasting RTT – (W – 1)S/R (see Figure 3.56). Thus, for case 2,

latency = 2 RTT + O/R + (K – 1) [S/R + RTT – WS/R]

Combining the two cases, we obtain

latency = 2 RTT + O/R + (K – 1) [S/R + RTT – WS/R]+

where [x]+ = max(x,0). Notice that the delay has three components: 2 RTT to set up
the TCP connection and to request and begin to receive the object; O/R, the time for
the server to transmit the object; and a final term (K – 1) [S/R + RTT – WS/R]+ for
the amount of time the server stalls.

This completes our analysis of static windows. The following analysis for
dynamic windows is more complicated but parallels that for static windows.

Dynamic Congestion Window

We now take TCP’s dynamic congestion window into account in the latency model.
Recall that the server starts with a congestion window of one segment and sends one
segment to the client. When it receives an acknowledgment for the segment, it
increases its congestion window to two segments and sends two segments to the
client (spaced apart by S/R seconds). As it receives the acknowledgments for the two
segments, it increases the congestion window to four segments and sends four seg-
ments to the client (again spaced apart by S/R seconds). The process continues, with
the congestion window doubling every RTT. A timing diagram for TCP is illustrated
in Figure 3.57.

Note that O/S is the number of segments in the object; in Figure 3.57, O/S = 15.
Consider the number of segments that are in each of the windows. The first window
contains one segment, the second window contains two segments, and the third win-
dow contains four segments. More generally, the kth window contains 2k–1

segments. Let K be the number of windows that cover the object; in the preceding
diagram, K = 4. In general, we can express K in terms of O/S as follows:

K k
O

S
= + + + ≥






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After transmitting a window’s worth of data, the server may stall (that is, stop
transmitting) while it waits for an acknowledgment. In Figure 3.55, the server stalls
after transmitting the first and second windows but not after transmitting the third.
Let us now calculate the amount of stall time after transmitting the kth window.
From the time the server begins to transmit the kth window until the time when the
server receives an acknowledgment for the first segment in the window is S/R +
RTT. The transmission time of the kth window is (S/R)2k–1. The stall time is the dif-
ference of these two quantities, that is,

[S/R + RTT – 2k–1 (S/R)]+

The server can potentially stall after the transmission of each of the first K – 1
windows. (The server is done after the transmission of the Kth window.) We can
now calculate the latency for transferring the file. The latency has three components:
2 RTT for setting up the TCP connection and requesting the file; O/R, the transmis-
sion time of the object; and the sum of all the stalled times. Thus,

Compare this equation with the latency equation for static congestion windows; all
the terms are exactly the same except that the term WS/R for static windows has
been replaced by 2k–1(S/R) for dynamic windows. To obtain a more compact expres-
sion for the latency, let Q be the number of times the server would stall if the object
contained an infinite number of segments. Paralleling a derivation similar to that for
K (see homework problems), we obtain:

The actual number of times that the server stalls is P = min {Q ,K – 1}. In Figure
3.55, P = Q = 2. Combining the equations (see homework problems) gives the fol-
lowing closed-form expression for the latency:
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Thus, to calculate the latency, we simply must calculate K and Q, set P = min {Q,
K–1} and plug P into the formula above.

It is interesting to compare the TCP latency with the latency that would occur if
there were no congestion control (that is, no congestion-window constraint). With-
out congestion control, the latency is 2 RTT + O/R, which we define to be the mini-
mum latency. It is a simple exercise to show that

We see from the formula above that TCP slow start will not significantly increase
latency if RTT << O/R, that is, if the round-trip time is much less than the transmis-
sion time of the object.

Let us now take a look at some example scenarios. In all the scenarios we set S
= 536 bytes, a common default value for TCP. We use an RTT of 100 msec, which is
a typical value for a continental or intercontinental delay over moderately congested
links. First consider sending a rather large object of size O = 100 kbytes. The num-
ber of windows that cover this object is K = 8. For a number of transmission rates,
the following table displays the effect of the slow-start mechanism on the latency.

Minimum Latency: Latency with
R O/R P O/R 	 2 RTT Slow Start 

28 kbps 28.6 sec 1 28.8 sec 28.9 sec

100 kbps 8 sec 2 8.2 sec 8.4 sec

1 Mbps 800 msec 5 1 sec 1.5 sec

10 Mbps 80 msec 7 0.28 sec 0.98 sec

We see from the table that for a large object, slow start adds appreciable delay only
when the transmission rate is high. If the transmission rate is low, then acknowledg-
ments come back relatively quickly, and TCP quickly ramps up to its maximum rate.
For example, when R = 100 kbps, the number of stall periods is P = 2, whereas the
number of windows to transmit is K = 8; thus the server stalls only after the first two
of eight windows. On the other hand, when R = 10 Mbps, the server stalls after each
window, which causes a significant increase in the delay.

Now consider sending a small object of size O = 5 kbytes. The number of win-
dows that cover this object is K = 4. For a number of transmission rates, the follow-
ing table examines the effect of the slow-start mechanism.

Latency
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Minimum Latency: Latency with
R O/R P O/R 	 2 RTT Slow Start 

28 kbps 1.43 sec 1 1.63 sec 1.73 sec 

100 kbps 0.4 sec 2 0.6 sec 0.76 sec 

1 Mbps 40 msec 3 0.24 sec 0.52 sec 

10 Mbps 4 msec 3 0.20 sec 0.50 sec 

Once again, slow start adds an appreciable delay when the transmission rate is high.
For example, when R = 1 Mbps, the server stalls after each window, which causes
the latency to be more than twice that of the minimum latency.

For a larger RTT, the effect of slow start becomes significant for small objects
for smaller transmission rates. The following table examines the effect of slow start
for RTT = 1 second and O = 5 kbytes (K = 4).

Minimum Latency: Latency with
R O/R P O/R 	 2 RTT Slow Start 

28 kbps 1.43 sec 3 3.4 sec 5.8 sec 

100 kbps 0.4 sec 3 2.4 sec 5.2 sec 

1 Mbps 40 msec 3 2.0 sec 5.0 sec 

10 Mbps 4 msec 3 2.0 sec 5.0 sec 

In summary, slow start can significantly increase latency when the object size is
relatively small and the RTT is relatively large. Unfortunately, this is often the case
with the Web.

An Example: HTTP

As an application of the latency analysis, let’s now calculate the response time for a
Web page sent over nonpersistent HTTP. Suppose that the page consists of one base
HTML page and M referenced images. To keep things simple, let us assume that
each of the M + 1 objects contains exactly O bits.

With nonpersistent HTTP, each object is transferred independently, one after the
other. The response time of the Web page is therefore the sum of the latencies for
the individual objects. Thus
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Note that the response time for nonpersistent HTTP takes the form

Response time 
 (M 	 1)O/R 	 2(M 	 1)RTT 	 latency due to TCP slow start 
for each of the M 	 1 objects. 

Clearly, if there are many objects in the Web page and if RTT is large, then nonper-
sistent HTTP will have poor response-time performance. In the homework prob-
lems, we will investigate the response time for other HTTP transport schemes. The
reader is also encouraged to see [Heidemann 1997; Cardwell 2000] for a related
analysis.

3.8 Summary

We began this chapter by studying the services that a transport-layer protocol can
provide to network applications. At one extreme, the transport-layer protocol can be
very simple and offer a no-frills service to applications, providing only a multiplex-
ing/demultiplexing function for communicating processes. The Internet’s UDP pro-
tocol is an example of such a no-frills transport-layer protocol. At the other extreme,
a transport-layer protocol can provide a variety of guarantees to applications, such
as reliable delivery of data, delay guarantees, and bandwidth guarantees. Neverthe-
less, the services that a transport protocol can provide are often constrained by the
service model of the underlying network-layer protocol. If the network-layer proto-
col cannot provide delay or bandwidth guarantees to transport-layer segments, then
the transport-layer protocol cannot provide delay or bandwidth guarantees for the
messages sent between processes.

We learned in Section 3.4 that a transport-layer protocol can provide reliable
data transfer even if the underlying network layer is unreliable. We saw that provid-
ing reliable data transfer has many subtle points, but that the task can be accom-
plished by carefully combining acknowledgments, timers, retransmissions, and
sequence numbers.

Although we covered reliable data transfer in this chapter, we should keep in
mind that reliable data transfer can be provided by link-, network-, transport-, or
application-layer protocols. Any of the upper four layers of the protocol stack can
implement acknowledgments, timers, retransmissions, and sequence numbers and
provide reliable data transfer to the layer above. In fact, over the years, engineers
and computer scientists have independently designed and implemented link-, net-
work-, transport-, and application-layer protocols that provide reliable data transfer
(although many of these protocols have quietly disappeared).

In Section 3.5 we took a close look at TCP, the Internet’s connection-oriented and
reliable transport-layer protocol. We learned that TCP is complex, involving connec-
tion management, flow control, and round-trip time estimation, as well as reliable data
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